

Welcome to the Raven Platform documentation!

This document exists as a guide to help users understand the Raven mortality platform, providing both end-user manuals as well as technical documentation.

What is Raven?

Raven is an open-source and proof of concept platform for the Medicolegal Death Investigation (MDI) FHIR Implementation Guide (IG). It is both a

	Testing Tool for data validation, data comparison, data exchange via API, and any features on demand in the future, and

	Education Tool for showing various examples in FHIR format and workflows in action”

The current Raven tooling and tests aid developers in implementing the MDI FHIR record format by validating the data against MDI IG guidelines and FHIR-based extended API operations. For more information on each Raven tool components, Raven’s MDI CSV schema, or MDI FHIR standard please see the corresponding sections in this document, accessible through the table of contents below or the sidebar navigation menu.

	End User Manual
	The MDI Standard
	What is FHIR?

	What is MDI FHIR IG?

	Overview of MDI Workflows
	MDI-to-EDRS

	Toxicology-to-MDI

	Record Management
	Record Import (Importing MDI Records)
	Spreadsheet Schema

	Record Viewer (Viewing Cases)

	Validation And Comparison
	Archtecture

	Workflow Simulator
	Workflows/Use Cases
	Search EDRS (CMS to EDRS)

	Technical Manual
	Standard MDI API (MAPI)
	Operation APIs for MDI-to-EDRS Workflow

	Security Recommendations
	Secure Data Transportation

	Standard Authorization Protocol
	Roles in OAuth2

	OAuth2 Flows
	Client Registration

	Authorization Request

	Access Token Request

	Refresh Token Request

	Accessing Resource Server

	Error Handling

	Search API
	Extended Operation for MDI-to-EDRS Document generation

	Error Handling

	Read API

	Update API
	Update using FHIR Messaging

	Component Overview
	Raven FHIR Server

	Bluejay FHIR Server

	Raven Dashboard

	Raven Import API

	Validation Service

	Libraries
	MDI JavaLib

	MDI .NET

	About Raven Team

Raven is released under the Apache License
2.0[#1].

Public Raven URL: https://apps.hdap.gatech.edu/raven/

Source repositories for Raven can be found in the GitHub Mortality Reporting Organization[#2].

Note

	All data shown is synthetic for demonstration purposes only and does
not represent actual cases or decedents.*

	Screenshots may be taken from earlier internal versions of Raven and
may not be 100% accurate to the final release.*

If you find an error in the Raven platform and documentation, please go to the “About Raven Team” page
and let us know!

Footnotes

[#1]
https://github.com/MortalityReporting/raven-platform/blob/main/LICENSE

[#2]
https://github.com/MortalityReporting/

End User Manual

In this section, you can learn how to use and run the Raven platform.
You can think of Raven as a playground or sandbox. Each structure has its own function and feature
that a user can play with or even put your hands in dirt if the user wants. In Raven, you can run
and play.

Are you non-technical?
If you are a non-technical end user, then we recommend you to go to “The MDI Standard” page first and learn about
Medicolegal Death Investigation (MDI) workflows

	The MDI Standard
	What is FHIR?

	What is MDI FHIR IG?

	Overview of MDI Workflows
	MDI-to-EDRS

	Toxicology-to-MDI

	Record Management
	Record Import (Importing MDI Records)
	Spreadsheet Schema

	Record Viewer (Viewing Cases)

	Validation And Comparison
	Archtecture

	Workflow Simulator
	Workflows/Use Cases
	Search EDRS (CMS to EDRS)

Footnotes

The MDI Standard

What is FHIR?

HL7 Fast Healthcare Interoperability Resources
(FHIR)[#1] is a successor to HL7’s earlier
industry standards healthcare messaging, HL7v2.x and HL7v3.x. It builds
upon those standards to produce a modern interoperability standard,
enabling the easy exchange of healthcare records across systems.

FHIR is built around the concept of “Resources”, logically distinct
entities that serve as the minimum granularity for transfer. For
example, the Patient resource represents core patient demographic data
and serves a focal reference for many other resources. Other resources
include clinical concepts such as Condition or an Observation.

FHIR is currently up to its R5 release, though R4 is still the most
prevalent of the modern releases and continues to be the release in
which most development is focused. For a complete list of FHIR R4
Resources and their respective maturities, please see the FHIR R4
Resource List[#2].

What is MDI FHIR IG?

The Medicolegal Death Investigation (MDI) FHIR Implementation Guide (IG)[#3] is a FHIR
implementation guide detailing the proper method of using FHIR resources
to construct a FHIR version of a Death and Toxicology Reporting. The MDI standard is
developed to support modernization of interoperability between Coroner/Medical Examiner case management systems (CMS)
and other systems such as Electronic Death Registrar Systems (EDRS) and Toxicology Lab Information and Management System (LIMS).

The Raven Platform uses the MDI IG for handling death
records, importing MDI data and exporting to FHIR resources.
The Raven Platform allows users to import their own data into
FHIR MDI resources and store them on the Raven FHIR Server.

MDI IG is still in the draft version and being evolved as more data elements are considered. The MDI IG
will follow the HL7 FHIR IG development cycles and will become mature over the development cycles.

For a more detailed breakdown of MDI contents, please see the official
MDI Implementation Guide[#4].

Overview of MDI Workflows

Currently, two workflows are defined in the MDI IG, MDI-to-EDRS and Toxicology-to-MDI. The MDI IG defines
profiles to describe the required content structures for the workflows.

MDI-to-EDRS

MDI-to-EDRS workflow represents the interoperability between MDI case management system (CMS) and
state’s electronic death registration system (EDRS). In MDI IG, this workflow is supported by
MDI-to-EDRS profiles. As it happens in most states, the case is mostly created by funeral directors.
Thus, this workflow begins with an initial case created at the EDRS. CMS first searches EDRS for a case
and retrieves the case with limited decedent’s demographics. CMS may update the case during the journey
of the death investigation. When the investigation is completed, the case shall be certified and
submitted to EDRS.

In this workflow, users can validate the MDI-to-EDRS FHIR bundle documents, load the documents, and submit to EDRS.
It’s highly recommended for users to first validate the FHIR data before loading to Raven. For those who do not
have their own dataset or are not ready to produce the dataset, Raven allows users to search the Raven FHIR Server,
load the case and play with the case. Users can explore the raw FHIR data along with the rendered data in forms.

Toxicology-to-MDI

Toxicology-to-MDI workflow represents the interoperability between forensic toxicology laboratory information
management system (LIMS) to an MDI case management system (CMS). In MDI IG, this workflow is supported by
Toxicology-to-MDI profiles. This workflow is bidirectional. There is an inital lab order sent from CMS
with samples. After lab work is performed, the lab report is sent back to CMS from LIMS. Currently, the
MDI IG specifies the lab reporting direction only and uses FHIR messaging for the data exchanges.

Users can validate the Toxicology-to-MDI FHIR bundle messages and store the messages in Raven FHIR server.

Footnotes

[#1]
http://hl7.org/fhir/

[#2]
https://hl7.org/fhir/R4/resourcelist.html

[#3]
http://hl7.org/fhir/us/mdi/

[#4]
http://hl7.org/fhir/us/mdi/background.html

Record Management

Record Import (Importing MDI Records)

Record Importing is a Raven feature that imports the Comma-separated Values (CSV) or spreadsheet
file into the MDI FHIR server in an MDI FHIR IG compliant format.

The FHIR data model is complicated and structured with multi-levels and logical references.
In order to help transitioning from non-FHIR data to MDI IG compliant format, the MDI CSV format
was designed. The Case Importing feature maps the pre-defined MDI CSV format to the MDI FHIR IG format
and persists them in the MDI FHIR server.

Note

Use Case: Mapping of any case management system data (in CSV/spreadsheet format) to MDI FHIR and
importing them to the Raven FHIR server

For the case importing, a predefined XLSX or spreadsheet template is provided to users. Users populate their
data to the provided template. The user-data will be converted to the MDI FHIR IG data and imported to
Raven FHIR server.

For connectathon support, the Case Importing feature in Raven will generate reference
MDI FHIR IG data using connectathon testcase data so that participant-generated MDI FHIR IG data can be
compared with the reference MDI FHIR IG data with the comparison tool. The case importing and comparing
data are done as follows.

	Importing Procedure
	
	Reads the testcases spreadsheet

	Converts the data in the testcases to MDI CSV

	Mapper maps the MDI CSV to MDI IG FHIR and stores the converted MDI FHIR IG data in the Raven FHIR Server
to be used as reference data

	When participants’ validated data are loaded to Raven, Comparison Tool compares the
loaded data with the reference data. See “Validation And Comparison” page for more information.

Spreadsheet Schema

If the user cannot construct the FHIR records necessary, or are unfamiliar with the FHIR standard in general;
Raven provides an excel spreadsheet XLSX template for easy of use. Users can fill in individual case data as
plaintext values, and use the import case view on the RAVEN platform. RAVEN will transform the XLSX data into
individual FHIR case records that adhere to the FHIR-MDI-IG standard. The template is hosted on the RAVEN
base site; and a copy can be directly downloaded from the public internet[#1].

[image: Use the XLSX file to construct case data and then import to transform to FHIR]
RAVEN Import XLSX Spreadsheet Definitions

	Sections

	Elements

	Description

	Tracking Numbers

	
	This section is for tracking separate identifiers, an identifier for the local mdi system, and the state registrar(EDRS) file number

	Tracking Numbers

	Tracking Number: Mdi Case Number

	A locally unique case number from the case management system. Optional

	Tracking Numbers

	Tracking Number: EDRS File Number

	A locally unique case number from the state registrar(EDRS). Usually assigned once the case has been registered or submitted to the state registrar.Optional

	Decedent

	
	This section is for decedent demographic information, all information resides in the us-core-patient resource within the document

	Decedent

	Decedent Name

	Primary name of the Decedent.Accepted Formats:<First Name> <Last Name><First Name> <Middle Initial> <Last Name><First Name> <Middle Name> <Last Name>

	Decedent

	Decedent Race

	Race of DecedentAccepted values are shown in the dropdownIf the decedent has multiple race entries, use a comma-seperated format to enter multiple races

	Decedent

	Decedent Ethnicity

	Ethnicity of DecedentAccepted values are shown in the dropdown

	Decedent

	Decedent SexAtDeath

	Decedent’s gender, as determined at the time of death.Accepted values are shown in the dropdown

	Decedent

	Decedent SSN

	Social Security Number of decedentAccepted Formats:###-##-#############

	Decedent

	Decedent Age

	The age of the decedent. In case of infant or fetal death, an age denomination may be used.Accepted formats:<Age Value><Age Value> <Age Unit>

	Decedent

	Decedent DOB

	The date in which the Decedent was bornAccepted Formats:mm/dd/yyyymm-dd-yyyy

	Decedent

	Decedent Marital status

	

	Decedent

	Decedent Residence: Street

	Primary Address of Decedent’s residence address. Multiple lines are supported.

	Decedent

	Decedent Residence: city

	

	Decedent

	Decedent Residence: county

	

	Decedent

	Decedent Residence: State, U.S. Territory or Canadian Province

	

	Decedent

	Decedent Residence: Postal Code

	

	Decedent

	Decedent Residence: Country

	

	Cause And Manner of Death

	
	This section is for the information collected in the Cause-and-Manner section of the MDI case document. Data includes* Cause of Death pathway* Manner of Death* Death Date* Injury description and cirumstances

	Cause And Manner of Death

	Cause of Death Part I Line a

	First line of the cause of death

	Cause And Manner of Death

	Cause of Death Part I Line b

	Second line of the cause of death

	Cause And Manner of Death

	Cause of Death Part I Line c

	Third line of the cause of death

	Cause And Manner of Death

	Cause of Death Part I Line d

	Fourth line of the cause of death

	Cause And Manner of Death

	Cause of Death Part I Interval, Line a

	Approximate interval of the first cause of death. A unit of age must be providedAccepted Formats:<Age> <Age Units>

	Cause And Manner of Death

	Cause of Death Part I Interval, Line b

	Approximate interval of the second cause of death. A unit of age must be providedAccepted Formats:<Age> <Age Units>

	Cause And Manner of Death

	Cause of Death Part I Interval, Line c

	Approximate interval of the third cause of death. A unit of age must be providedAccepted Formats:<Age> <Age Units>

	Cause And Manner of Death

	Cause of Death Part I Interval, Line d

	Approximate interval of the fourth cause of death. A unit of age must be providedAccepted Formats:<Age> <Age Units>

	Cause And Manner of Death

	Cause of Death Part II

	Other conributing conditions to the cause of death.If multiple contributing conditions apply, use a comma seperated list.

	Cause And Manner of Death

	Manner of Death

	Manner of deathAccepted values are shown in the dropdown

	Cause And Manner of Death

	Date of Injury

	If an injury occurred leading to death, the date of the injuryAccepted Formats:mm/dd/yyyymm-dd-yyyy

	Cause And Manner of Death

	Time of Injury

	If an injury occurred leading to death, the time of the injury. Date of Injury must be completed for time of injury to be accepted.Accepted Formats:hh:mm:sshh:mmhh:mm AM/PM

	Cause And Manner of Death

	How Injury Occurred

	A text description of the injury.

	Cause And Manner of Death

	Did Injury Occur at Work?

	In the case of an injury, was the injury a part of the decedent’s work.Accepted values are shown in the dropdown

	Cause And Manner of Death

	Decedent’s Transportation Role During Injury

	If an injury occurred with a vechicle, was the decedent a driver, passenger, or pedestrian?Accepted values are shown in the dropdown

	Death Circumstances

	
	This section describes specific findings and circumstances related to the decedent’s death* Death Location* Injury Location* Death Date* Decedent Pregnancy Status* Tobacco Use Contribute to Death

	Death Circumstances

	Location of death

	Full or partial address describing the location of death

	Death Circumstances

	Location of Injury

	If an injury occurred, description of location, full, or partial address of the location of injury

	Death Circumstances

	Pregnancy status

	Was the decedent pregenant, and how close to term was the decedent?Accepted values are shown in the dropdown

	Death Circumstances

	Did Tobacco Use Contribute to Death?

	If the decedent used tobacco, did their tobacco use contribute to their cause of death?Accepted values are shown in the dropdown

	Jurisdiction

	
	This section describes jurisdictional findings for the case* Death Date* Pronounced date* Place of death established

	Jurisdiction

	Decedent Date of death

	The date of death of the decedentAccepted Formats:mm/dd/yyyymm-dd-yyyy

	Jurisdiction

	Decedent Time of death

	The time of death of the decedent. Decedent date of death must be completed for Decedent Time of death to be acceptedAccepted Formats:hh:mm:sshh:mmhh:mm AM/PM

	Jurisdiction

	Date establishment method

	The circumstances of how the date of death was established.Accepted values are shown in the dropdown

	Jurisdiction

	Date pronounced dead

	The date in which the decedent was formally pronounced deadAccepted Formats:mm/dd/yyyymm-dd-yyyy

	Jurisdiction

	Time pronounced dead

	The time in which the decedent was formally pronounced dead. Date pronounced dead must be completed for Time pronounced dead to be acceptedAccepted Formats:hh:mm:sshh:mmhh:mm AM/PM

	Jurisdiction

	Place of death

	The type of place the decedent died in (home, hospital, hospice, etc.)Accepted values are shown in the dropdown

	Exam-Autopsy

	
	This section describes the autopsy findings, if an autopsy occurred.

	Exam-Autopsy

	Autopsy Performed?

	Was an autopsy performed on the body?

	Exam-Autopsy

	Autopsy Results Available?

	If an autopsy was performed, are the results available and used to determine the cause of death?

	Chief Medical Examiner/Coroner

	
	This section describes the primary Chief Medical Examiner or Coroner associated to the case.

	Chief Medical Examiner/Coroner

	Medical Examiner Name

	Name of the Medical Examiner.Accepted Formats:<First Name> <Last Name><First Name> <Middle Initial> <Last Name><First Name> <Middle Name> <Last Name>

	Chief Medical Examiner/Coroner

	Medical Examiner Phone Number

	Phone number of the office of the Medical Examiner, or primary contact numberAccepted Formats:###-###-####

	Chief Medical Examiner/Coroner

	Medical Examiner License Number

	Medical Examiner License Number associated to the juridiction in which the case is owned.

	Chief Medical Examiner/Coroner

	Medical Examiner Office: Street

	Primary Address of the medical examiner’s office or primary address. Multiple lines are supported.

	Chief Medical Examiner/Coroner

	Medical Examiner Office: City

	

	Chief Medical Examiner/Coroner

	Medical Examiner Office: County

	

	Chief Medical Examiner/Coroner

	Medical Examiner Office: State, U.S. Territory or Canadian Province

	

	Chief Medical Examiner/Coroner

	Medical Examiner Office: Postal Code

	

	Certifier

	
	This section describes the certifier of the case, if the case has been certified. Oftentimes, the Chief Medical Examiner and the Certifier can be the same party. If the case is not certified, leave blank

	Certifier

	Certifier Name

	Name of the Certifier.Accepted Formats:<First Name> <Last Name><First Name> <Middle Initial> <Last Name><First Name> <Middle Name> <Last Name>

	Certifier

	Certifier Type

	Is the Certifer a Physician, a pronouncer, or other?

Record Viewer (Viewing Cases)

The Record Viewer is a UI component which allows the browsing and viewing of Raven FHIR Server records,
encompassing both MDI Case Documents (MDI to EDRS) and Toxicology Reports (LIMS to MDI).
In addition to providing a user-friendly option for viewing the data present on the FHIR Server,
the layout is structured from the perspective of the MDI Implementation Guide to serve as an educational
tool to better understand the data structure and fields which make up the MDI to EDRS and Toxicology to
MDI documents.

[image: Raven Record Viewer Diagram]
The Record Viewer also features a FHIR Resource Explorer, which allows users to select a field and
see the underlying FHIR Resource structure containing the related data. The FHIR Resource Explorer will
support JSON and XML formats, as well as a human readable “narrative view”.

Note

Use Case: Human readable display of MDI FHIR IG data with a FHIR explorer. Any cases loaded in
the Raven FHIR server should be retrievable by Record Viewer. Users can use FHIR APIs to load the data.

Footnotes

[#1]
https://gtvault-my.sharepoint.com/:x:/g/personal/mriley7_gatech_edu/EW6MPoLovyROhAxtk4tjqkkBNzn0SstRhs_g4OOwBhcPIA?e=oL0Ci5

Validation And Comparison

The Validation & ComparisonRaven feature set includes the MDI Validator and the Comparison Tool. The purpose of Validation & Comparison is to confirm MDI record conformance and validity as it is important to connectathon testing and support.

The MDI (Medicolegal Death Investigation) Validator is a web application that allows users to upload or
copy-paste their MDI FHIR IG data for validation. The MDI Validator uses the HL7 FHIR validator as a core
validation engine and provides a user interface (UI) wrapper that is tailored to the MDI IG.

The Comparison Tool is a connectathon supporting tool that will compare pre-validated test case MDI FHIR IG
data with the user generated FHIR data. Users will want to ensure that not only their data validated but also
their contents in FHIR correctly populated. The Comparison Tool will provide a compressed case view with side
by-side comparison of the imported record and the correct test case record. This will let users easily hone
in on individual content issues and have confidence in their process.

Note

Connectathon Support - validation of user generated MDI FHIR IG data.

Connectathon participants can enter their FHIR documents into the MDI FHIR IG validator and review any errors.
The validator confirms the users’ confidence in their external mapping as well as provides a learning
experience for review and conforming to the IG.

Archtecture

These would be modules within the Raven Platform or could be used independent of Raven for testing.
They rely on the Raven FHIR server to serve the data.

[image: Raven Validator Architecture]

Footnotes

Workflow Simulator

The Workflow Simulator is a module of the Raven platform that allows users to simulate data flows between Medicolegal Death Investigation (MDI)
systems such as case management systems (CMS), electronic death registration systems (EDRS), and toxicology laboratory information systems (LIMS).
The supported data flows are defined by interoperability use cases. There are two types of established use cases: Testing Use Cases and
Operational Use Cases.

	Testing Use Cases: Use cases that are developed for testing events to evaluate the interoperability implementation of MDI systems

	Operational Use Cases: Use cases that are defined by users in the MDI community to standardize the operations such as search, update, certification, amendment, or messaging.

Some testing use cases can be supported by individual Raven modules such as the FHIR Validator and Record Comparison modules. Operational
use cases, which are often more complex, such as the Search EDRS API workflow, can be implemented as a proof-of-concept using the Workflow
Simulator prior to production development. Thus, users can use the Workflow Simulator as clear indicators and metrics to help making decisions
on where to spend their resources as they rebuild for modernization and interoperability within their data ecosystems.

Workflows/Use Cases

When opening the Workflow Simulator module, the user will be given a list of currently implemented workflows
to select from. Once selected, the workflow will be loaded, presented as a step by step process in Raven.

[image: Raven Overview Diagram]

Search EDRS (CMS to EDRS)

Step 1 - Import/Select Record (Optional)

The first step of the Search EDRS workflow allows the user to select an MDI to EDRS Document from the Raven FHIR Server to use to auto
populate search parameters with the values from the record. Users may also import a record into the workflow as an MDI to EDRS Document
Bundle in the FHIR JSON format. This step is entirely optional, and if a user wishes to proceed without a case select they can
manually input all search parameters required.

[image: Select MDI to EDRS Document]
[image: Import MDI to EDRS Document Bundle JSON]
Step 2 - Configure Endpoint

After the user decides on whether they would like to use an existing record, they are taken to the Configure Endpoint step. This part of
workflow is the configuration of the FHIR endpoint for testing the search functionality against an Electronic Death Registration System (EDRS).
Users may select between a pre-registered Endpoint or a Custom Endpoint. Pre-registered endpoints are configured in Raven and will typically
provide open testing endpoints, including the Raven BlueJay server which acts as a test EDRS. Selecting a pre-registered endpoint requires no
additional configuration from the user. For custom endpoints, users may provide a non-registered testing endpoint and setup basic authorization
as needed. Custom endpoints are not recorded in any form by the Raven platform, and their use is entirely the responsibility of the user.
Please note that the Raven platform is a single page application based in a web browser, and using custom endpoints may result in the user’s
browser recording sensitive information separate from the Raven platform. (This should be managed by the user in coordination with their
organization’s internal IT policies.)

[image: Configure Endpoint]
Step 3 - Search EDRS (API Interaction)

The final step of the Search EDRS workflow is the execution of search parameters against the identified EDRS endpoint. The potential parameters
fields are data driven and populated automatically based on the FHIR MDI Implementation Guide “MDI Documents” Operation Definition. Users may
select any number of parameter fields they wish to use. If a record was selected or imported during step 1, the parameters will attempt to have
their values automatically populated. As the user enters data or modifies the parameter fields, an example of the FHIR Parameters resource is
shown for demonstration purposes which matches the current state of the parameters HTML form. This allows users building reference
implementations a model to which they can refer in their own development, tying a standard HTML style form to the underlying FHIR resource it
will produce. Once satisified with their search parameters, users may connect to the EDRS and attempt to find matching records.

[image: Search EDRS Parameters]
If records are identified on the EDRS, the results are shown below the parameters. The results can be viewed either as a human readable table
summarizing the matching records, or as a raw FHIR search set bundle. In addition, users can use the HTTP Request and Response tabs to better
be able to identify the headers involved in the HTTP call to the EDRS. In the summary table under the default Results tab, a record may be
selected to load further information.

[image: Search Results]
Once selected in the Results table, the record is displayed below the table. As with the full search results, this can be viewed either as a
human readable summary and as the underyling FHIR MDI to EDRS Document Bundle

[image: Result Record Summary]

Footnotes

Technical Manual

In the technical manual, we get into deeper and provide technical information for developers or users with a technical background.
The contents of this section will be subject to change as the Raven evolves or is added with new features. As the changes
can happen often, it’s highly recommended to refresh each page so that the cached pages can be refreshed with new updates.

	Standard MDI API (MAPI)
	Operation APIs for MDI-to-EDRS Workflow

	Security Recommendations
	Secure Data Transportation

	Standard Authorization Protocol
	Roles in OAuth2

	OAuth2 Flows
	Client Registration

	Authorization Request

	Access Token Request

	Refresh Token Request

	Accessing Resource Server

	Error Handling

	Search API
	Extended Operation for MDI-to-EDRS Document generation

	Error Handling

	Read API

	Update API
	Update using FHIR Messaging

	Component Overview
	Raven FHIR Server

	Bluejay FHIR Server

	Raven Dashboard

	Raven Import API

	Validation Service

	Libraries
	MDI JavaLib

	MDI .NET

Footnotes

Standard MDI API (MAPI)

Note

Standard MDI API (MAPI) will be documented as a best practice in the MDI IG site in the future.
Until then, the Raven documentation will temporarily house the standard MAPI specification.

Operation APIs for MDI-to-EDRS Workflow

MDI FHIR Implementation Guide (IG) is available in http://hl7.org/fhir/us/mdi/ This
IG should be used for the payload of MAPI.

FHIR defines base restful APIs for FHIR data transportation. Their documents are available
from https://hl7.org/FHIR/http.html. And, the FHIR API Operations are documented
in https://hl7.org/FHIR/operationslist.html. MAPI is extended the FHIR ASPI operations.
Therefor, the basic rules of FHIR APIs and operations are also applied to MAPI. For example,

	Content-type for FHIR resources is application/fhir+xml or application/fhir+json. This needs to
be specified in the HTTP header.

	application/x-www-form-urlencoded can be used for POST search requests if HTTP Form is used.

In FHIR, FHIR resources, interactions, and operations are published using CompatibilityStatement
(GET [base]/metadata). Detailed information about the CompatibilityStatement is available
in https://hl7.org/FHIR/capabilitystatement.html. It is recommended that EDRS FHIR servers publish
their capability statement as defined in this link.

Security Recommendations

This section covers a minimum level of security recommended by the MDI FHIR IG. There are more data
exchange protocols and content models defined in the FHIR Security document[#1].
MDI systems that require a higher level of security should refer to the FHIR Security document
for the interoperability.

Secure Data Transportation

In most modern systems, digital data are exchanged using web services. FHIR recommends a web service
called RESTful Application Programming Interface (REST API) where REST stands for REpresentational State
Transfer. REST API uses Transport Layer Security (TLS) for the secure transportation. More accurately,
TLS 1.2 or higher needs to be used. This is also known as HTTPS. All data exchanges in MDI FHIR IG must
be done in HTTPS

Standard Authorization Protocol

A standard authorization protocol that can be used for the data access is the OAuth 2.0 (OAuth2)
Authorization Framework defined in RFC 6749[#2]. There are many documents provided by OAuth2 service
providers that are much easier and simpler to understand. Searching on Internet using “OAuth2” keyword
will return several related documents.

Roles in OAuth2

OAuth2 defines several components that play different roles. Systems in MDI IG should play the roles to
support the OAuth2. The OAuth2 roles are changed depending on the roles in the MDI workflows. Table1
shows which OAuth2 roles the systems in MDI IG should play in the MDI-to-EDRS and Toxicology-to-MDI
workflows. As more workflows are added to the MDI IG, additional roles may be added to the system,
which may be ended up playing multiple roles.

	Role

	Responsibility

	MDI-and-EDRS

	Tox-and-MDI

	Authorization Server

	Server that authenticates the resource owner and issues access
tokens to the client application. The authorization server can be
the same as the authentication server or can be a separate server.

	EDRS

	CMS

	Client

	Application that wants to access the resource on behalf of the
resource owner. The client can be a web application, a mobile
application, or a desktop application.

	CMS

	LIMS

	Resource Owner

	User who owns the resource (such as a photo or a document) that
a client application wants to access. The resource owner grants
permission to the client application to access the resource.

	CMS Users
EDRS Users

	LIMS Users

	Resource
Server (Provider)

	Server that hosts the resource that the client application wants
to access. The resource server verifies the access token and
grants access to the resource if the token is valid.

	EDRS

	CMS

Table1: Roles in OAuth2 and MDI Systems

OAuth2 Flows

OAuth2 defines different flows based on the client (or application) types. This document only discusses
the flow(s) that might be applicable to the client types in MDI. Figure 1 depicts the authorization code
flow that can provide authentication and authorization of clients in MDI workflows. Detail transactions
for the authorization code flow are explained in section 4.1[#3] of RFC 6749[#4].

[image: Authorization Code Flow in OAuth2]

Figure 1: Authorization Code Flow in OAuth2

Client Registration

For a client to be able to get authenticated and authorized, the client must be registered at the
authorization server. When a client is registered, the client should provide redirection_uri.
Client_id will then be issued to the client. The client will use the client_id and redirection_uri
for its authentication and authorization.

Authorization Request

Client first needs to get an authorization code. In Figure 1, 1, 2, and 3 are the authorization request
steps. Client should provide client identifier with client_id and redirection_uri (optional). Client_id
and redirection_uri will be matched with registered data at the authorization server (1). If the request
is valid, then the client will be redirected to user authentication (2) where authentication and consent
occur. Once client authenticated and authorized, authorization code is returned to client by being
redirected to the redirection_uri (3).

Parameters for the authorization request are as follows. They are included as URL parameters with HTTPS
GET method. However, POST can also be used by having the parameters included in the payload with a
content-type set to application/x-www-form-urlencoded.

Parameters

	Request

	response_type

	required

	Fixed value: code

	client_id

	required

	Client identifier issued at the registration

	redirection_uri

	optional

	Full URL that authorization server will use to respond to request

	scope

	optional

	

	state

	recommended

	

	Response

	code

	required

	Authorization Code to be used for the access token request

	state

	required

	If client puts state in the request

Response to the request is sent to the redirection_uri at the client using application/x-www-form-urlencoded
content-type.

Example:

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

Access Token Request

After authorization code is successfully received, access token request can be sent to authorization server
(or token server) for an access token. Steps 4 and 5 in figure 1 are access token request flow. Parameters
for the access token request are as follows.

Parameters

	Request

	grant_type

	required

	Fixed value: authorization_code

	code

	required

	The authorization code received from the request.

	redirection_uri

	required

	Full URL that authorization server will use to respond to request

	client_id

	required

	If the client is not authenticating with authorization server

	Response

	access_token

	required

	Access token issued by the authorization server

	token_type

	required

	Type of the token issued

	expires_in

	recommended

	The lifetime (in sec) of the access token

	refresh_token

	optional

	Used to obtain a new access token

	scope

	optional

	

Example

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

Refresh Token Request

If refresh token is available, then a request can be sent to the authorization server (or token endpoint).
If client authentication is included, the authentication needs to be performed.

Parameters

	Request

	grant_type

	required

	Fixed value: refresh_token

	refresh_token

	required

	Refresh token issued to a client.

	scope

	optional

	

	Response

	access_token

	required

	Access token issued by the authorization server

	token_type

	required

	Type of the token issued

	expires_in

	recommended

	The lifetime (in sec) of the access token

	refresh_token

	optional

	Used to obtain a new access token

	scope

	optional

	

Example

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA

Accessing Resource Server

After authentication/authorization is (are) completed, client can put the access token in the header and
submit the request to resource server for data. The access token is placed in the header as follows.

Authorization: Bearer <access token>

Client must check the expires_in value. If token is expired, and refresh access token is supported, then
client can submit the request to renew the access token (see sections above related to the requests).

Error Handling

If error occurs during authorization, the server should respond as specified in 5.2[#5] of RFC 6749[#6].
In summary, the response should be 400 (Bad Request) status code (unless specified otherwise) with the
following parameters.

Error Parameters:

	Key

	error

	required

	A single ASCII error code from the following values:

	Values

	
invalid_request

	
The request is missing a required parameter, includes an unsupported parameter value

(other than grant type), repeats a parameter, includes multiple credentials, utilizes

more than one mechanism for authenticating the client, or is otherwise malformed.

	
invalid_client

	
Client authentication failed (e.g., unknown client, no client authentication included,

or unsupported authentication method). The authorization server MAY return an HTTP 401

(Unauthorized) status code to indicate which HTTP authentication schemes are supported.

If the client attempted to authenticate via the “Authorization” request header field,

the authorization server MUST respond with an HTTP 401 (Unauthorized) status code and

include the “WWW-Authenticate” response header field matching the authentication scheme

used by the client.

	
invalid_grant

	
The provided authorization grant (e.g., authorization code, resource owner credentials)

or refresh token is invalid, expired, revoked, does not match the redirection URI used

in the authorization request, or was issued to another client.

	
unauthorized_client

	The authenticated client is not authorized to use this authorization grant type.

	unsupported_grant_type

	The authorization grant type is not supported by the authorization server.

	invalid_scope

	
The requested scope is invalid, unknown, malformed, or exceeds the scope granted by the

resource owner.

	Values for the “error” parameter MUST NOT include characters outside the set %x20-21 / %x23-5B / %x5D-7E.

	Key

	
error_description

	
optional

	
Human-readable ASCII text providing additional information, used to assist

the client developer in understanding the error that occurred. Values for

the”error_description” parameter MUST NOT include characters outside the

set %x20-21 / %x23-5B / %x5D-7E.

	
error_uri

	
optional

	
A URI identifying a human-readable web page with information about the

error, used to provide the client developer with additional information

about the error. Values for the “error_uri” parameter MUST conform to the

URI-reference syntax and thus MUST NOT include characters outside the set

%x21 / %x23-5B / %x5D-7E.

Example

HTTP/1.1 400 Bad Request
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
 "error":"invalid_request"
}

Search API

[image: MDI to EDRS Workflow]
The above diagram depicts the MDI to EDRS API workflow. MAPI design follows this workflow.
We will start with the SEARCH operation. In most states, the case is created by funeral directors.
For this document, we assume that the case has already been created at the EDRS with decedent’s demographics.

The FHIR defines basic search API. However, the FHIR search parameters are specific to a resource. The extended
search queries are complicated. So, MAPI extended the FHIR document generation operation ($document) and
defined search parameters that represent MDI data elements. Details about the base $document operation is described
in https://www.hl7.org/fhir/composition-operation-document.html

Let’s first review how MAPI extended the $document operation.

Extended Operation for MDI-to-EDRS Document generation

This is a resource instance type extended operation. It means that the MDI document is generated from the
Composition resource. And the extension is made to the extended search parameters.

This is an idempotent operation. Both POST and GET can be used with the following endpoint URL pattern.

POST [base FHIR Url]/Composition/$document with Parameters resource in the payload
GET [base FHIR Url]/Composition/$document?name1=value1&name2=value2

Search Parameters for the MDI Document Generation

	Name

	Cardinality

	Type

	Documentation

	In Parameters

	id

	0..1

	uri

	Composition.id of Composition - MDI to EDRS

	tracking-number

	0..1

	token

	Composition.extension:extension-tracking-number of Composition - MDI and EDRS

	patient

	0..*

	
	One or more decedent related search parameters

	patient.birthdate

	0..1

	date*

	Decedent’s date of birth

	patient.family

	0..1

	string

	Decedent’s last name

	patient.given

	0..1

	string

	Decedent’s first name

	patient.gender

	0..1

	token

	Decedent’s gender

	death-location

	0..1

	string

	Location address in Location-death

	death-date-pronounced

	0..1

	date*

	Observation.component:datetimePronouncedDead in Observation - Death Date (either time or dateTime)

	death-date

	0..1

	date*

	Value[x] (actual or presumed date of death) in Observation - Death Date (either dateTime or Period)

	Out Parameters

	
return

	
0..1

	
resource

	
Bundle - Searchset or Bundle - Document MDI and EDRS. If [id] is supplied,

then this should be Bundle - Document MDI and EDRS

* date parameter search in FHIR[#7] uses first two characters for date range search (eg. “lt” for less than).
To use the date range search, the type needs to be string.

Please note that the Search parameters related to patient are formatted with “.” (dot). In FHIR, this means
that the search parameters after “.” are part of patient parameter in Parameters resource.
See the example below.

{
 "resourceType":"Parameters",
 "parameter":[
 {
 "name":"patient",
 "part":[
 {
 "name":"family",
 "valueString":"Hans"
 },
 {
 "name":"given",
 "valueString":"Kennoby"
 }
]
 }
]
}

If id is provided within URL path (e.g., /Composition/id/$document), then the output response
should be an MDI document bundle as there will be only one or zero result.

If id or search paraemters is provided in the URL parameter (e.g. [base]/Composition?name=value)
or Parameters resource in the payload, then the output response should be a searchset Bundle resource
with matching MDI document Bundle resources even if there is only one result. If “OR” search parameter
is needed in the searching parameters, then as specified in the FHIR specification
(https://hl7.org/fhir/R4/search.html#escaping), “,” should be used. For example, if we want to search
records that has death-location equals to either a, b, or c, then its search parameter in Parameters
resource will be like below.

"name”: "death-location",
"valueString": "a,b,c"

Please see the examples of search Parameters resource and its response.

Request

POST [FHIRbaseURL]/Composition/$document

 {
 "resourceType":"Parameters",
 "parameter":[
 {
 "name":"patient",
 "part":[
 {
 "name":"family",
 "valueString":"Hans"
 },
 {
 "name":"given",
 "valueString":"Kennoby"
 }
]
 }
]
 }

Response

{
 "resourceType":"Bundle",
 "id":"13ab1ecf-38ce-4f47-aebb-a38396a80775",
 "type":"searchset",
 "total":1,
 "entry":[
 {
 "resourceType":"Bundle",
 "id":"fd240814-5911-49bb-bb20-72066add4a18",
 "meta":{
 "profile":[
 "http://hl7.org/fhir/us/mdi/StructureDefinition/Bundle-document-mdi-to-edrs"
]
 },
 "type":"document",
 "entry":[
 {
 "fullUrl":"Composition/965a0688-e6f4-4bff-a96d-639cbd7ea295",
 "resource":{
 "resourceType":"Composition",
 "id":"965a0688-e6f4-4bff-a96d-639cbd7ea295"
 }
 }
]
 }
]
}

Error Handling

API Level Errors
API itself can indicate errors. API errors are displayed in the HTTP code. 2xx are returned when API
transactions are successfully processed. 4xx or 5xx are error codes. 3xx are not errors. These codes
need to be supported at the client side if redirections are required by the server. More details can
be found from https://en.wikipedia.org/wiki/List_of_HTTP_status_codes.

CMS must check if the correct endpoint and search parameters are used if such errors are returned. Server
also returns error code when there are document level errors. In this case OperationOutcome could be
included in the payload. CMS would want to parse the payload as it contains the source of errors. For
more information about the OperationOutcome, see the following section.

MDI Document Level Errors with 2xx HTTP response
For all non 2xx status code, error(s) must be indicated in the response with a OperationOutcome resource.

In OperationOutcome, EDRS must be include information what caused the error if the error needs to be
fixed by CMS. If it’s the EDRS that needs to fix the error, it must be indicated so that CMS user(s) can
contact EDRS for the error. Below shows an example of OperationOutcome.

HTTP/1.1 500 Internal Server Error

{
 "resourceType":"OperationOutcome",
 "id":"searchfail",
 "text":{
 "status":"generated",
 "div":"<div xmlns=\"http://www.w3.org/1999/xhtml\">\n
 <p>The "name" parameter has the modifier "exact" which is not supported by
 this server</p>\n</div>"
 },
 "issue":[
 {
 "severity":"fatal",
 "code":"code-invalid",
 "details":{
 "text":"The \"name\" parameter has the modifier \"exact\" which is not supported by this server"
 }
 }
]
}

Read API

READ API uses the base FHIR operation $document. The URL pattern is.

GET [base FHIR URL]/Composition/id/$document

id is a Composition resource Id, which is assigned by systems such as CMS and EDRS. If a server maintains
the id for all generated FHIR Document Bundles, then this id should be used to get the document.
The response for this API is a MDI document Bundle (not a searchset Bundle).

Update API

During the death investigation, C/ME may need to update the case in the EDRS. This API allows CMS to update
the active case. PUT should be used for the HTTP action method. And, Parameters resource is used to include
the MDI document or profile(s) that C/MEs want to update. Since this API presumes that the case already exists
in the EDRS, the case management system must either make sure identifier(s) is included in the MDI document or
provide a parameter that EDRS can use to find the case to update.

FHIR endpoint for UPDATE API operations is as follow.

PUT [base url]/Composition/$update-mdi

The payload is Parameters resource as defined below.

Input/Output Parameters

	Name

	Cardinality

	Type

	Documentation

	In Parameters

	Jurisdiction defined
parameters

	0..*

	string

	Any required parameters for a
jurisdiction

	tracking-number

	1..1

	token

	EDRS case number if available

	mdi-document

	1..1

	Bundle

	MDI document bundle. The
“mdi-document” is a reserved
keyword. This should only be used
for the MDI-and-EDRS profile
bundle document.

	warning

	1..1

	OperationOutcome

	Informational OperationOutcome
(For response ONLY)

	Out Parameters

	return

	0..1

	OperationOutcome

	If an error occurs, OO resource
is returned. If response data
need to be sent back,
Parameters resource can be used.

Ex. Request in the payload

{
 "resourceType":"Parameters",
 "parameter":[
 {
 "name":"edrs-file-number",
 "valueString":"1234"
 },
 {
 "name":"jurisdiction defined key",
 "valueString":"value"
 },
 {
 "name":"mdi-document",
 "resource":{
 [Your MDI document bundle goes here in JSON or XML.]
 }
 }
]
}

In Parameters includes parameters that can be used for the update operation.

UPDATE API allows custom parameters (labeled as Jurisdiction defined parameters). They are locally
defined parameters. It can be used in any ways by the systems that defined the parameters.
If Jurisdiction defined parameters exist but cannot be understood, they should be ignored and
should NOT cause any error.

The mdi-document, is a death certificate document in MDI FHIR IG. If CMS is updating the complete death
certificate, then all the required data elements should exist in the docvument.

Partial document is allowed if CMS needs to update only portion of death certificate document. However,
to conform to MDI FHIR IG, any empty required fields must be extended to include data-absent-reason extension.

The response for a successful UPDATE API should be 200 OK. The payload is not required in the response.
If EDRS or CMS needs to respond with some data in the response, the Parameters resource can be used.
EDRS and CMS can use the same parameters as In Parameters parameters. If the submitted document will
be included in the response body, then “mdi-document” parameter key should be used.

If the API operation was successful, but there were some warnings that EDRS wants to send back to CMS,
then parameter key, “warning”, should be used. And, “resource” should be used to include OperationOutcome
resource. If the API operations were failed, then the response should be OperationOutcome resource with a
HTTP error status code. Please see the example of response below.

Ex. Response if the operation was successful, and EDRS wanted to respond with updated data.

{
 "resourceType":"Parameters",
 "parameter":[
 {
 "name":"jurisdiction defined key1",
 "valueString":"value1"
 },
 {
 "name":"jurisdiction defined key2",
 "valueString":"value2"
 },
 {
 "name":"mdi-document",
 "resource":{
 "MDI document bundle"
 }
 },
 {
 "name":"warning",
 "resource":{
 "OperationOutcome resource"
 }
 }
]
}

Response if error occured.

{
 "resourceType":"OperationOutcome",
 "id":"searchfail",
 "text":{
 "status":"generated",
 "div":"<div xmlns=\"http://www.w3.org/1999/xhtml\">\n <p>The "case number" 1234 does not exist</p>\n </div>"
 },
 "issue":[
 {
 "severity":"fatal",
 "code":"case-invalid",
 "details":{
 "text":"The \"case number\" 1234 does not exist."
 }
 }
]
}

Update using FHIR Messaging

If a messaging infrastructure is already in place, or if the content needs to be forwarded to another endpoint,
it may be necessary to handle the target endpoint differently, given that the FHIR receiving endpoint is not the
actual target. If this direction is deemed appropriate, the FHIR process-message operation
(https://hl7.org/fhir/R4/messageheader-operation-process-message.html) can be employed.

If the decision is to utilize the process-message operation, the payload should take the form of a bundle,
with the initial entry being a MessageHeader resource. Subsequent to this entry, parameters must be present,
adhering to the specifications outlined in the Update API.

Footnotes

[#1]
https://www.hl7.org/fhir/security.html

[#2]
https://www.rfc-editor.org/rfc/rfc6749

[#3]
https://www.rfc-editor.org/rfc/rfc6749#section-4.1

[#4]
https://www.rfc-editor.org/rfc/rfc6749

[#5]
https://www.rfc-editor.org/rfc/rfc6749#section-5.2

[#6]
https://www.rfc-editor.org/rfc/rfc6749

[#7]
https://hl7.org/fhir/r4/search.html#date

Component Overview

[image: Raven Component Architecture]

Raven FHIR Server

The Raven platform stores MDI case data in the Raven FHIR server. The Raven FHIR server is developed
using HAPI FHIR Java library[#1] with
fhirbase[#2] as the backend database. Basic instance
level of the FHIR APIs are implemented and available as,

GET [base FHIR Url]/Patient/[id] or [search parameters for SEARCH]
POST [base FHIR Url]/Patient with Patient Resource in the payload
DELETE [base FHIR Url]/Patient/[id]

In addition to the basic FHIR API, FHIR operation APIs are also implemented for transaction,
batch, $document, and $process-message operations. $process-message is the operation that
Toxicology-to-CMS workflow is using.

Bluejay FHIR Server

The Bluejay FHIR server is an instance that is configured to simulate EDRS that supports
Standard MDI API (MAPI) (MDI-API). The Bluejay FHIR server is also based on the same code stack as Raven FHIR Server.
Thus, the Bluejay FHIR server also provides the basic instance level of the FHIR APIs.

MDI-API that the Bluejay FHIR server currently supports is search API. Case Management Systems can
test their MDI-API’s search API feature with the Bluejay FHIR server. Please contact
our team to arrange the testing.

Raven Dashboard

The Raven Dashboard is the user interface for the Raven Platform. It consists of multiple core modules and features.

	
	Record Importing and Viewing
	
	Record Viewer - View MDI case records currently stored on the Raven FHIR Server, with the ability to view the underlying FHIR structures in a human readable narrative, XML, or JSON.

	Import Records - Import records to the Raven FHIR Server. Records can be submitted directly as a FHIR MDI-to-EDRS Document Bundle or from the MDI test case spreadsheet (XLSX file).

	
	Validate and Compare
	
	FHIR Validator - UI wrapper for the official HL7 FHIR Validator command line tool.

	Record Comparison (In Development) - Compare a user-generated FHIR MDI Document bundle created from a test case against a known valid rendering of the same test case.

	Workflow Simulator (In Development) - Move through steps of one of several test scenarios for various MDI related workflows, such as CMS to EDRS or a Toxicology Lab to CMS. The workflow simulator integrates other features.

The Raven Dashboard is a frontend TypeScript project develped using the Angular framework, leveraging major libraries such as Angular Material Design components.

Raven Import API

The Raven Import API provides a backend service to import test cases from XLSX spreadsheets into the Raven FHIR Server as a FHIR MDI-to-EDRS Document Bundle. The API returns the results of the process to the Dashboard for rendering to users.

Validation Service

The Validation Service is a web API which wraps the HL7 command line FHIR validation tool. The Raven Dashboard allows users to post a FHIR resource to the validation service, which returns to the results of the validation.

Footnotes

[#1]
https://hapifhir.io/hapi-fhir/

[#2]
https://www.health-samurai.io/fhirbase

Libraries

Raven provides helper libraries for developers who develop MDI IG functionality in their systems. In fact, Raven
itself is using this library in order to produce and consume the MDI IG data. The libraries are available in
Java and .NET and are also available as an open source. Details for each library are provided below.

MDI JavaLib

This Java Library is for the following FHIR Implemtation Guides (IG)

	Medicolegal Death Investigation (MDI) FHIR IG | http://hl7.org/fhir/us/mdi/

	Occupational Data for Health (ODH) FHIR IG | http://hl7.org/fhir/us/odh/STU1.1/

	US Core FHIR IG | https://www.hl7.org/fhir/us/core/

The model profiles are built with the annotation package and base model definitions from HAPI-FHIR (https://hapifhir.io/)

MDI Javalib is available as a buildable source package in the MortalityReporting github organization (https://github.com/MortalityReporting/MDI_javalib)

The library is built as a maven project and can be added as a dependency to existing projects (https://maven.apache.org/)

	User can use the MDI Javalib to
	
	Deserialize JSON or XML into java objects

	Create new resources from an internal data source

	Serialize java objects into JSON or XML for transmission

MDI .NET

This .NET Library is for the following FHIR Implementation Guides (IG)

	Medicolegal Death Investigation (MDI) FHIR IG | http://hl7.org/fhir/us/mdi/

	US Public Health (US PH) FHIR IG | https://build.fhir.org/ig/HL7/fhir-us-ph-common-library-ig/

	US Core FHIR IG | https://www.hl7.org/fhir/us/core/

All profiles are built on top of standard .NET FHIR classes (https://github.com/FirelyTeam/firely-net-sdk).

ODH, US PH, and US Core IGs are base IGs that MDI and CBS IGs are built on. Thus, only referenced
profiles in US PH, US Core, and ODH are implemented. The rest of the profiles will be added based on the needs.

MDI .NET libraries are available for download from nuget.org. Simply search by “MDI FHIR” at the nuget manager
in Visual Studio. If you want to download from nuget.org, then the link will be
https://www.nuget.org/packages?q=MDI+FHIR. The result will show up as follow, and C# developers need to install
all three of libraries,

[image: MDI IG Libraries in Nuget.org]
Source codes are also available for developers who are willing to contribute to the IG library developement in .net - https://github.com/MortalityReporting/fhir-ig-dotnet

Footnotes

About Raven Team

	Jon Duke

	Project Director

	
Alexandra Ramirez,

Julie Mittelstedt,

Marla Gorges

	
Project Manager

	Myung Choi

	Project Lead, MDI FHIR Server, MDI-API, MDI .NET Library

	
Michael Riley

	
MDI FHIR Import/Mapper, Validator, MDI Java Library,

Community Engagement

	
Elizabeth Shivers

	
Documentation Lead, DevOps/CI, User Experience and

Interface (Dashboard), MDI-API IG

	Plamen Tassev

	User Interface (Dashboard) Lead, Case Viewer, Validator

	Andrew Stevens

	MDI-API IG Lead

	Russell Mitchell

	User Interface (Dashboard)

For any questions or requests, please use Zulip #Medicolegal Death Investigation Stream[#1].

Footnotes

[#1]
https://chat.fhir.org/#narrow/stream/305799-Medicolegal-Death-Investigation

Index

Architecture and Components

System Overview

The following diagram is intended to give a general look at the Raven
Platform. Please note that this is not to be considered a strictly
technical architecture diagram for development purposes, and is only
intended to demonstrate a high level view of the functionality of the
system as relates to the physical layout of components, connection to
external end points, and the users’ scope.

[image: Raven Overview Diagram]

Workflow Simulator

The workflow simulator is depicted in the diagram above and structured with stages. The workflow simulator is an end-to-end framework that manages the project workstreams. Individual components under the Project Workstreams are modularly composed in the workflow simulator.

Case Importing

Case Importing is a Raven 2.0 feature that imports the Comma-separated Values (CSV) or spreadsheet file into the MDI FHIR server in an MDI FHIR IG compliant format.

The FHIR data model is complicated and structured with multi-levels and logical references. In order to help transitioning from non-FHIR data to MDI IG compliant format, the MDI CSV format was designed. The Case Importing feature maps the pre-defined MDI CSV format to the MDI FHIR IG format and persists them in the MDI FHIR server.

Validate & Compare

The MDI (Medicolegal Death Investigation) Validator is a web application that allows users to upload or copy-paste their MDI FHIR IG data for validation. The MDI Validator uses the HL7 FHIR validator as a core validation engine and provides a user interface (UI) wrapper that is tailored to the MDI IG.

The Comparison Tool is a connectathon supporting tool that will compare pre-validated test case MDI FHIR IG data with the user generated FHIR data. Users will want to ensure that not only their data validated but also their contents in FHIR correctly populated. The Comparison Tool will provide a compressed case view with side by-side comparison of the imported record and the correct test case record. This will let users easily hone in on individual content issues and have confidence in their process.

Case Viewer

The Case Viewer is a UI Component which allows the browsing and viewing of Raven FHIR Server records, encompassing both MDI Case Documents (MDI to EDRS) and Toxicology Reports (LIMS to MDI). In addition to providing a user-friendly option for viewing the data present on the FHIR Server, the layout is structured from the perspective of the MDI Implementation Guide to serve as an educational tool to better understand the data structure and fields which make up the MDI to EDRS and Toxicology to MDI documents.

The Case Viewer also features a FHIR Resource Explorer, which allows users to select a field and see the underlying FHIR Resource structure containing the related data. The FHIR Resource Explorer will support JSON and XML formats, as well as a human readable “narrative view”.

Raven/Bluejay FHIR Servers

Raven/Bluejay FHIR server is developed to persist MDI FHIR Data and provide the data using FHIR APIs and extended operations. Raven/Bluejay FHIR server includes support for the MDI IG.

Footnotes

Local Deployment Instructions

This tutorial will provide a walkthrough of deploying the Raven Platform
locally using Docker.

Contents Overview

work-in-progress

Footnotes

FHIR

HL7 Fast Healthcare Interoperability Resources
(FHIR)[#1] is a successor to HL7’s earlier
industry standards healthcare messaging, HL7v2.x and HL7v3.x. It builds
upon those standards to produce a modern interoperability standard,
enabling the easy exchange of healthcare records across systems.

FHIR is built around the concept of “Resources”, logically distinct
entities that serve as the minimum granularity for transfer. For
example, the Patient resource represents core patient demographic data
and serves a focal reference for many other resources. Other resources
include clinical concepts such as Condition or an Observation.

FHIR is currently up to its R5 release, though R4 is still the most
prevalent of the modern releases and continues to be the release in
which most development is focused. For a complete list of FHIR R4
Resources and their respective maturities, please see the FHIR R4
Resource List[#2].

FHIR MDI Resources

FHIR Implementation Guides (IGs) provide detailed instructions
and guidance for implementing FHIR in specific healthcare settings
or use cases. These guides outline how to use FHIR resources,
data elements, and profiles to exchange information between systems,
as well as best practices for API operations, security, and privacy.
For the Medicolegal Death Investigation Community, NCHS has developed
the MDI-FHIR-IG. MDI-FHIR-IG specifies actors and components in the
MDI space, the specific workflows supported as standardized
data exchange, and the resources and data format used for the exchange.
In specfic , the MDI standard is developed to support modernization of
interoperability between Coroner/Medical Examiner systems (CMS) and
other systems such as Electronic Death Registrar Systems (EDRS) and
Toxicology Lab Information and Management System (LIMS).
You can review the guide at https://hl7.org/fhir/us/mdi/

The Raven Platform uses the MDI IG for handling death
records, allowing importing MDI data and exporting to FHIR resources.
The Raven Platform allows users to import their own data into
FHIR MDI resources and store them on the Raven FHIR Server.

MDI IG is still in the draft version ann being updated based on the HL7 FHIR IG development cycles.
MDI IG developers are adapting VRDR data elements if data concepts are overlapped instead of creating
new ones so that the transitions can be achieved smoothly. Data elements that exist in IJE but not needed in MDI
are not included while data elements that are required in MDI are included. MDI IG developer group encourages
MDI community to actively participate in providing their needs, adapting the MDI IG, and testing in Raven platform.

For a more detailed breakdown of MDI contents, please see the official
MDI Implementation Guide[#3].

Footnotes

[#1]
http://hl7.org/fhir/

[#2]
https://hl7.org/fhir/R4/resourcelist.html

[#3]
http://build.fhir.org/ig/HL7/fhir-mdi-ig/background.html

Medicolegal Death Investigation (MDI) CSV Data

In order for user data to be imported into the Raven FHIR Server and
accessed by the Raven Platform, it must be available as FHIR VRDR
Resources. (For more information on FHIR VRDR, please visit the FHIR page in this wiki.) However, as it is still
an emerging technology most systems cannot natively provide their data
as FHIR resources. In order to facilitate non-FHIR enabled systems in
using the Raven Platform, the MDI CSV format is provided. The Raven
Platform is designed to be able to map the Raven MDI CSV format into the
proper FHIR Resources.

CSV (“Comma-separated Values”) is a common plain text format for storing
data, such as tables or spreadsheets. Each column for a field is
separated by a comma, with each new line indicating a row of data. For
MDI CSV, each row represents a full death investigation case file.

You can find an example of MDI CSV data in the Raven Platform repository
at
https://github.com/MortalityReporting/raven-platform/blob/main/testing-documents/ConnectathonTestCases.csv.

Using MDI CSV

This section discusses general concerns regarding mapping to MDI CSV
from your own data. For a complete tutorial on using the Raven Dashboard
to assist in the mapping of your external data to the MDI CSV format,
please see the import-data section.

Non-mappable Fields

If there are no clear mappings between your data set and the reference
MDI CSV, you may include a blank field which will be considered as a
null value.

Unique Identifiers (CASEID and SYSTEMID)

FHIR Resources include an “identifier” element which allows users to
define unique system identifiers for a Resource independent of the
Resource’s logical ID on a specific FHIR Server. For example, in
clinical data a Patient resource may include a series of identifiers
that represent the patient in a specific Hospital system. For MDI CSV
data you must include two identifiers, “CASEID” and “SYSTEMID”, in order
to distinguish your decedent cases from other cases. “SYSTEMID” is used
to represented the original CMS from which the case originated, while
“CASEID” is a unique representation of that specific case. This allows a
single instance of Raven to serve many systems simultaneously.

Note on Identifier vs ID in FHIR

Please be aware that the FHIR “identifier” element is not the same as
the FHIR “id” element. The FHIR “id” element, also known as logical ID,
is a representation of the FHIR Resource on a specific FHIR server and
is not a consistent identifier for a single resource across servers. If
your resource has a logical ID of “12345” on FHIR Server A and is then
transferred to FHIR Server B, it is highly unlikely to have the same
logical ID on FHIR Server B. The “identifier” element on the other hand
should always represent a single, unique entity across any FHIR server.
For instance, a patient’s SSN acts as a unique identifier that will be
the same on FHIR Server A as it is on FHIR Server B. This is why you
must include unique identifier elements for your data for it to be
accessible.

MDI CSV Data Fields and FHIR Mappings

For a list of the MDI CSV fields as well as mappings to FHIR (in a
separate sheet), please see the provided Google Sheets
document[#1].

Footnotes

[#1]
https://docs.google.com/spreadsheets/d/1OShYZEl8ZklDffcmHA3UsoruKc1F9O0f_0t7fnFWESI/edit?usp=sharing

Step 3 - Deploy the Raven Import and Submission API

Note: The Raven Import and Submission API is currently listed under
the “Raven Mapper API” repository and thus will be copied to that
directory. This is a legacy of early implementation, if you have the
“Raven Mapper API” you have the Raven Import and Submission API.

The Raven Import and Submission API component provides for the Import
(or Mapper) and Submission (or Export) APIs which handle any operations
that need to be performed with the Raven FHIR Server or when interacting
with external systems. To begin, navigate to the “/raven-mapper-api”
directory located where you cloned the Raven Platform repository. An
example of this if you are following this tutorial precisely is provided
in the box below.

If you are in the "/raven-fhir-server" directory...
cd ..

Once you are back in the "/raven-platform" directory...
cd raven-mapper-api

Just as with the FHIR server, you will be standing this component up
through Docker using the Dockerfile.local version to follow this
tutorial, in which the environment variables for use here are again
predefined as below.

ENV FHIRCMS_URL=http://raven-fhir-server:8080/raven-fhir-server/fhir
ENV FHIRCMS_BASIC_USERNAME=client
ENV FHIRCMS_BASIC_PASSWORD=secret
ENV CANARY_URL=nightingale.hdap.gatech.edu:8080/
ENV SERVER_PORT=8081

Please note that the CANARY_URL variable here points to a Georgia Tech
server for the time being for validation. This should not be used in any
other environment other than this local demo.

It is also worth noting the formation of the Raven FHIR Server endpoint
utilizes a Docker bridge networking setup, in which the Raven FHIR
Server container can be accessed by the name of the container in the
network as shown. In a non-Docker local deployments, the first instance
of “raven-fhir-server” in the FHIRCMS_URL variable would likely be
replaced by “localhost”.

You may use the following commands to build and then run the container.

sudo docker build -f Dockerfile.local -t raven-import-submit .
sudo docker run -d --restart unless-stopped --publish 8081:8080 --name raven-import-submit --network=raven-platform raven-import-submit

If you had to make any modifications in earlier steps, you will need to
change the variables and commands accordingly.

Health Check

At this point in the process it is advised to perform a health check on
the system backend components. You should be able to access an import
test endpoint for the Import and Submission API component at
http://localhost:8081/raven-import-and-submit-api.

[image: Health check]
You may use this interface to import sample data, which is available in
the current directory, in the file “ConnectathonTestCase122221.csv”.
Select the “Choose file” button and then in the file picker select this
sample data. Once selected, you may press the “Import Decedent” button
to begin the process. You will be given an import status screen, which
should show a “Check” next to the line. Now, if you navigate to the
Raven FHIR Server’s FHIR endpoint and look at the Patient resources
available at http://localhost:8080/raven-fhir-server/fhir/Patient you
should be able to find data for the test case.

If you were following this tutorial precisely, everything should be
working. If you made some modifications and something went wrong in this
process, it is recommended that you double check any environment
variables you may have changed in earlier steps and rebuild those
components as needed. If something is not working and you did follow the
tutorial precisely, please file an issue on our GitHub Issues
page[#1].

Continue to Step 4 - Deploy the Raven Dashboard.

Footnotes

[#1]
https://github.com/MortalityReporting/raven-platform/issues

Managing Raven Containers

During the course of deployment and use of the local demo you may wish
to bring your various Raven component containers up and down,
particularly if you wish to free up resources or ports or if you simply
need to delete a container entirely.

Note that there are some dependencies between the containers, at least
in function even if a component will still seemingly be operational. The
hierarchy of requirements is the order in which the containers are
deployed in the instructions, and is as follows, with default container
names given in parenthesis.

	Fhirbase (fhir_db) - This container is the foundation of the entire
stack, and is explicitly required by the Raven FHIR Server. It should
be the first container brought up and the last container brought
down.

	Raven FHIR Server (raven-fhir-server) - This container sits on top of
the Fhirbase fhir_db container directly, and so should be the second
container to be brought up and second to last container brought down.

	Raven Import and Submission API (raven-import-submit) - This
container includes multiple APIs and acts as a go-between the
Dashboard and other components or external servers. It can exist
separately from other components without causing startup errors so
does not have to be brought up in a strict order, but without the
FHIR Server and database in turn it will not provide any
functionality.

	Raven Dashboard (raven-dashboard) - This should logically be the last
component to be brought up and first component to be brought down.
Like the Import and Submission APIs it will not encounter any startup
errors if the other components are not present, but you may run into
issues around browser caching that are better to avoid.

Data Persistance

Please note that deleting the Fhirbase (fhir_db) container will
permanently remove any data you have posted to it through the FHIR
Server. You may however stop the container without deleting it and
still retain your data.

When upgrading to newer versions of other Raven components, you may
leave your database container intact if there were no direct alterations
made to the database schema, maintaining your existing data. For
example, if there are updates to the Dashboard or APIs it is safe to
redeploy those without touching your database. This also applies to most
modifications to the Raven FHIR Server, as modification of the database
schema as present in the database itself is rare. In the case there is a
change in this regard, it will be called out explicitly.

If you wish to remove all of your data stored in the Fhirbase (fhir_db)
container, deleting the container and rerunning it through Docker is the
most efficient way to do so. For more fine tuned management, you will
want to use traditional FHIR operations which are outside of the scope
of this guide.

Managing Containers through a Command Line Interface

Starting Containers

Please note that this section only discusses starting containers in the
context of them having already been built and ran. If you need to
perform either of these steps, please consult the related section of
this deployment guide.

If your container has already been built and ran but you later stopped
it for some reason, you may start the container back up with the
following command, using the Raven Dashboard as an example:

docker start raven-dashboard

For the other components, you would simply replace “raven-dashboard”
with the name of the component container.

Stopping Containers

To stop a running container, you simply need to execute the following
command:

docker stop raven-dashboard

This will leave the container in a suspended state without deleting it.
Again, replace “raven-dashboard” with the name of the component
container.

Deleting/Removing Containers

Please see the section on Data Persistence before permanently deleting
a container.

If you need to delete a container permanently, you may do so by running
the following command:

docker rm raven-dashboard

Again replacing “raven-dashboard” with the name of the specific
component container you wish to delete. This will note delete the image
the container is based on, only the actively inflated container. Once a
container is deleted, if you wish to run it again you will need to first
execute the “docker run” command as specified in the deployment guide
for that component, which will inflate the container based on the
settings specified in the command parameters and then start the
container.

Deleting Images

If you wish to permanently remove an image, you may execute the
following command:

docker rmi raven-dashboard

While you will also be replacing “raven-dashboard” with the name of a
specific component image, please be aware that container names and image
names are rarely equivalent. For Raven most of the components maintain
the same naming scheme for the sake of simplicity and due the fact there
is no expectation a single system will ever need to run multiple
containers based on the same Raven images, though this is often not the
case. This can be seen with the Fhirbase fhir_db container, as the image
it is based on is actually a generic Fhirbase image and not Raven
specific prior to the database configuration performed as part of the
deployment. If you do not need that image anymore, you should use the
image name “fhirbase/fhirbase” in the “docker rmi” command.

Managing Containers through Docker Desktop

Docker Desktop, available for Windows and Mac OSX, allows for stopping,
starting, and removing containers through a GUI.

By selecting the “containers/apps” option in the Docker Desktop
dashboard view you will see a list of both currently running and stopped
containers. Hovering over a container will provide traditional “Play”
and “Stop” controls which will allow you manage the container.

The “images” option shows a list of currently built locally or
downloaded images. Hovering over each container in the list will show an
options icon of three stacked dots. Clicking this opens options to
inspect the image (such as the build commands from the Dockerfile),
along with additional advanced functionality which is out of the scope
of this guide. This list also includes the “remove” option, allowing you
delete the image from your local disk. Please note that while you can
run images from this list to inflate it into a container, it is not
recommended as there are certain arguments that the Raven Deployment
expects from the command line.

Footnotes

Step 4 - Deploy the Raven Dashboard

First, navigate to the /raven-dashboard subdirectory under
/raven-platform.

If you are in the Raven Mapper Export component directory, first use...
cd ..

Otherwise, from the Raven Platform directory navigate to the Raven Dashboard with...
cd raven-dashboard

Configuring the Dashboard

Unlike the other components, the environment variables are set in the
.env file you should find at the dashboard’s root directory. Two
variables will be defined. For your local deployment, ensure they are as
follows aside from any changes you need to make to reflect deviations
from this tutorial.

FHIR_SERVER_URL=http://localhost:8080/raven-fhir-server/fhir
MAPPER_EXPORT_URL=http://localhost:8081/raven-import-and-submit-api/

Running the Dashboard in Docker

As with other components, the Dashboard is provided in a Docker
container which can be built and run with the following commands.

sudo docker build -f Dockerfile.local -t raven-dashboard .
sudo docker run -d -p 80:80 --network=raven-platform --name raven-dashboard --restart unless-stopped raven-dashboard:latest

After the container is ran, you should be able to browse to
http://localhost:80/app/cases and see the browse cases view of the
Raven Dashboard. If you previously loaded a case through the health
check portion of the Raven Mapper Export component step you should see
this case reflected here, otherwise the list will be empty.

Congratulations, you have successfully deployed the Raven Platform!

Footnotes

Step 1 - Getting Started and FHIR Database

Step 1a) Clone the Raven Platform Repository

To begin, open a Linux terminal. This is included with MacOS and Linux
systems. Windows users will want to install the Windows Ubuntu terminal
or equivalent (please see the prerequisites section for more information
on the Windows Ubuntu terminal). Navigate to the directory you would
like the Raven Platform to reside, then run the following command:

git clone --recurse-submodules https://github.com/MortalityReporting/raven-platform.git

This will create a /raven-platform/ directory which contains a sub
directory for each of the Raven components.

Step 1b) Create a Docker Network

In order for the various components to connect to one another, you must
set them all up using the same Docker network. To create the network use
the following command:

docker network create raven-platform

Whenever a Raven Platform container is ran you will use a parameter to
connect them to this network.

Step 1c) Setup a Fhirbase Database

For storing FHIR Resources, you will use Fhirbase. Fhirbase is a
Postgres based database toolkit for FHIR, which you can read more about
at https://www.health-samurai.io/fhirbase.

Deploy Fhirbase

First, you will pull the latest Fhirbase image from Docker Hub. (Docker
Hub is a central repository for registered Docker images from which you
can run a container. For more information, please visit
https://hub.docker.com/.) To pull the image, run the following
command:

sudo docker pull fhirbase/fhirbase:latest

Now that you have the Fhirbase image pulled to your local machine, you
can startup a container based on that image using the command:

sudo docker run -d -p 3000:3000 -p 5432:5432 --network=raven-platform --name fhir_db --restart unless-stopped fhirbase/fhirbase:latest

This will start the container, mapping the ports from the container to
ports on your localhost. In this case, the ports are kept the same. You
can test that the container is running by going to
http://localhost:3000 in a web browser. This should load the
Fhirbase query UI. (Note: We will not be using this as part of the Raven
Platform. This is entirely to ensure functionality.)

Creating a Database

Once you know your container is working, it is time to build the
database.Using the name defined before, you can execute the shell of
your container, allowing you to work directly inside of your container.

sudo docker exec -it fhir_db /bin/bash

Your command line should now indicate you are inside the container by
changing to “postgres@[container ID]:/fhirbase$”.

Now you are inside the container, let’s run some commands to get the
database setup fully. You will be using the PostgreSQL command line
interface psql. PostgreSQL is the open source database upon which
Fhirbase is built. Go ahead and execute the PostgreSQL command as
follows to start the interpreter.

psql

Your command line should now read “postgres=#” and you are ready to
create your database. You are free to name your database whatever you
would like, but something descriptive is strongly recommended. For this
example we will use “ravenfhirdb”. To create a database with this name,
execute the following command:

CREATE DATABASE ravenfhirdb;

If you opted to use a different name, simply replace the name in the
command. Do not neglect to include the semicolon at the end of the
command. Once you have executed the command, Postgres will return
“CREATE DATABASE”. To ensure your database is properly created though,
execute the command:

\l+

This will list the databases available. You should see your newly
created database here.

[image: Creating a Database and Viewing a list of Databases in PSQL]
Once you confirm your database is created, you can exit psql with

\q

You will then use Fhirbase to initialize the database with the FHIR R4
schema. To do so, run the following command, replacing the name of the
database if you used something other than “ravenfhirdb”. This specifies
for Fhirbase to initialize the specified database with FHIR version
4.0.0 (R4).

fhirbase -d ravenfhirdb --fhir=4.0.0 init

You may now exit out of your container using just the command “exit”.

exit

Your Fhirbase database is now setup and you are ready to move on to the
next step! Continue to Step 2 - Deploy the Raven FHIR Server.

Footnotes

Local Demo Prerequisites

To begin deploying the Raven Platform, you will require Docker/Docker
Desktop and Git at a minimum.

	Docker[#1] - Docker is a
platform for deploying “containers”, which provide for consistent
environments in which software can run in isolation. The Raven
Platform components are provided as Docker containers to simplify
running each component in your local environment. To learn more about
Docker and containers, please see:
https://www.docker.com/resources/what-container.

For Windows Users: From the Windows Store you can install the
Windows Ubuntu terminal, giving you the ability to work from a Linux
command line environment. You may also wish to setup Windows Subsystem
for Linux 2 (WSL2) and enable the WSL2 integration in Docker Desktop.
This circumvents many common issues working with Docker on a Windows
system. For more information on Docker and WSL 2, please visit
https://docs.docker.com/docker-for-windows/wsl/.

Git should be pre-installed in most environments, including the base Mac
terminal and Windows Ubuntu terminal.

In addition to these tools, if you intended to attempt to build
components of Raven without using Docker, you will require the
following:

	Java JDK version 10 or
higher[#2]
- The Java Development Kit is required to run some components of the
Raven Platform.

	Maven[#3] - Maven is a build tool for Java
based projects, and is used to build some of the Raven components.

For Mac Users: Homebrew is the recommended means of installing and
managing Maven and Git. For more on Homebrew, please visit
https://brew.sh/.

Once you have all of the required tools installed, you are ready to get
started. Continue to Step 1 - Getting Started and FHIR Database.

Footnotes

[#1]
https://docs.docker.com/get-docker/

[#2]
https://www.oracle.com/java/technologies/javase-downloads.html

[#3]
http://maven.apache.org/

Step 2 - Deploy the Raven FHIR Server

Before continuing, ensure that you have followed step 1 and cloned the
Raven Platform GitHub repository, including submodules, to your local
machine.

Navigate to the Raven FHIR Server directory. If you are in the directory
you cloned the repository into, you will likely need to execute the
following commands. (Adjust as needed based on where you are in the
directory structure.)

cd raven-platform
cd raven-fhir-server

Once you are in the “/raven-fhir-server” directory you can begin, make
not of the available Dockerfiles. If you are unfamiliar with Docker, a
Dockerfile is essentially a script for setting up an environment
template, a Docker image, in which to run an application. The image will
then be used as the foundation for a Docker container which is the
actual miniature environment, very similar to a lightweight Virtual
Machine (it’s not really a VM, but don’t worry about that here). Here
you should have Dockerfile and Dockerfile.local. If you open
Dockerfile.local, you should see the following lines beginning with ENV,
which are preconfigured to follow this deployment guide.

ENV JDBC_URL=jdbc:postgresql://fhir_db:5432/ravenfhirdb
ENV JDBC_USERNAME="postgres"
ENV JDBC_PASSWORD="postgres"
ENV SMART_INTROSPECTURL="http://localhost:8080/raven-fhir-server/raven-fhir-server/smart/introspect"
ENV SMART_AUTHSERVERURL="http://localhost:8080/raven-fhir-server/raven-fhir-server/smart/authorize"
ENV SMART_TOKENSERVERURL="http://localhost:8080/raven-fhir-server/raven-fhir-server/smart/token"
ENV AUTH_BASIC="client:secret"
ENV FHIR_READONLY="False"
ENV INTERNAL_FHIR_REQUEST_URL="http://localhost:8080/raven-fhir-server/fhir"

If you need to adjust something for your local environment in some form,
such as having selected a different name for your database in Step 1,
you should modify the values here. If you are unsure if you need to
change anything, you most likely do not.

Once you are done making any needed changes to your Dockerfile.local (or
the base Dockerfile if you are using it for a more customized setup) and
have saved them, run the following command to build your image. (Do not
neglect the “.” at the end of the line. If you are using the Dockerfile
and not Dockerfile.local, remove the extension shown in the command.)

sudo docker build -f Dockerfile.local -t raven-fhir-server .

You should see output relating to each step of the Docker build process.
Once you have built your image, you can run the container with:

sudo docker run -d --restart unless-stopped --publish 8080:8080 --name raven-fhir-server --network=raven-platform raven-fhir-server

The Raven FHIR Server should now be accessible at
http://localhost:8080/raven-fhir-server. While the server will be
empty for the moment, you should see the FHIR Server UI as in the
screenshot below.

[image: Raven Fhir Server UI]
Continue to Step 3 - Deploy the Raven Import and Submission API.

Footnotes

Deployment

While there is a public Raven demo available, for users who wish to deploy the Raven into their own environments there are two primary approaches: a simple containerized Docker based deployment and direct deployment leveraging a user’s infrastructure (e.g. Tomcat, etc).

Docker

Coming Soon…

Non-Docker

Coming Soon…

Footnotes

Raven Platform API Documentation

Raven Platform maintains the following APIs.

FHIR server APIs: Raven coponents use FHIR server to load and query MDI data. Thus, basic FHIR APIs are
supported (i.e. Create, Read, Update, and Delete (CRUD) in basic resource types are defined in the MDI.)

Full FHIR API documentation is available from https://hl7.org/fhir/R4/http.html.

The following default FHIR operations are supported as well.

Process message: $process-message (https://hl7.org/fhir/R4/composition-operation-document.html)
Generate Document: $document (https://hl7.org/fhir/R4/messageheader-operation-process-message.html)

In order to support MDI-API, the FHIR server also implements FHIR extended operations. the extended
operations are available in “Standard MDI API (MAPI)”

Footnotes

 _images/Screen_Shot_2020-12-16_at_3.42.24_PM.png
Select a CSV file

Choose File |No file chosen

Import Decedents

_images/authorization_code_flow.png
Client Authorization Server Resource Provider
f—————1. Client Identifier & Redirection URI————p»{
f— 2 UserAuthenticates— !

{<¢———————3. Authorization Code

{————4. Authorization Code & Redirection URl——»{

{«¢——5. Access Token with Optional Refresh Token— ——

6. Resource Request with Access Token. -

_images/RavenXLSXFileHeader.png
Elements

Description

‘This Excel File can be imported into RAVEN2.0;
converting into FHIR and importing info RAVEN

[This section is for Gecedent demographic.
linformation, al information resides in the us-core-
|patient resource within the document

[Primary name ofthe Decedent
|Accepted Formats:

|<First Name= <Last Name>

|<First Name> <Middle Inital> <Last Name>
|<First Name= <Middle Name> <Last Name>

[Decedent Race

[Race of Decedent
|Accepted values are shown in the dropdown
fthe decedent has multple race enies, use a
|comma-seperated format o enter muttiple races

[Decedent Ethnicity.

[Ethnicity of Decedent
|Accepted values are shown in the dropdown

[Decedent SexAtDeath

[Decedents gender, as determined at he time of
|death.
|Accepted values are shown in the dropdown

[Decedent SSN

[Social Security Number of decedent
|Accepted Formats:

ey

[

[Decedent Age.

[The age ofthe Gecedent In case of infant or fetal
|deatn, an age denomination may be used.
|Accepted formats

[<Age Value>

|<Age Value> <Age Unit>-

[Decedent DOB.

[The date in which the Decedent was bom,
|Accepted Formats:

mmiddiyyyy

mm-dc-yyyy

[Decedent Marital status

_images/Screen_Shot_2020-12-16_at_3.35.01_PM.png
Home Server: Local Tester ~ Source Code About This Server

Options

Encoding | (defauly | XML = JSON Georgia Research . (D CHAI (.
Pretty (defauly = On | Off TeCh | D@@ﬁﬁﬁ@]ﬁ@ g 1o G b (& FHIR

=

Summary
(none) | true text = data | count This server provides an FHIR R4 Specification for Mortality Reporting. Most of functions will be based on VRDR Profiles.

Server This server is built from a number of modules of the HAPI FHIR project and OMOP on FHIR project, which are both 100% open-source
(Apache 2.0 Licensed) Java based implementation of the FHIR specification.

Server Home/Actions

Resources Server HAPI FHIR

Observation @ Software Raven FHIR Server (R4) - 4.2.0

Condition @) FHIR Base http://localhost:8080/raven-fhir-server/fhir

Composition @)
Server Actions

Retrieve the server's conformance statement.

Location
° Conformance

_images/mapi_cms_to_edrs_workflow.png
'Demographics using EDRS app

Search for a case then update with death data
MDIFHIR G

cMs

Response(s)
HTTP and FHIR Response

_images/mdi_in_nuget.png
.G nug et Packages Upload Statistics Documentation Downloads Blog Signin

MDI FHIR e

3 packages retumed for MDI FHIR 7 Fiter

° fhir—ig—mdi—dotnet by: myung
| 88 total downloads < last updated 12 minutes ago [Latest version: 1.0.0 < FHIR MDI IG

.NET Library for HL7 FHIR® Implementation Guide: Medicolegal Death Investigation (MDI), Release 1 - US Realmn (1.0.0 - STU 1 US)

° fhir-ig-share-dotnet by: myung
1 90 total downloads <D last updated 15 minutes ago [Latest version: 0.2.2 <3 FHIR Share |G MDI CBS

.NET Library for Commonly Shared Definitions in FHIR MDI and CBS IG

° fhir-ig-uscore-dotnet by: myung
{ 102 total downloads < last updated 13 minutes ago o Latest version: 0.2.1 <3 FHIR US Core USCore IG

.NET Library for US Core FHIR IG v5.0.1 - not all resource(s) are implemented. Only refereced ones from CBS and MDI are implemented

_images/case_viewer.png
-t

fapstiet e/ R
e —
- st ¢
Sty i wor o TRl ittt
e — o e o - .
Yottt
i ot o T e
e e = e T S ——
e o e —t
et o ™) cmpeiion”,
= T e)) TR iR mer
e ¢
o = | Cr— il
A N ——
[Rw—
[ooem tocuran s s kG v tneoccures o wen
[o T

_images/component_diagram.png
[L]
ahn

Users

FHIR Record
>
I Raven Dashboard
Validation
J Results
FHIR
MDI XLSX Import Records
v Results

API

Raven [mport FHIR Records

———— |

Database
Interaction

Validation
Service

.
Mee—

FHIRBase

N~

_images/postgres-database-list.png
postgres=# CREATE DATABASE ravenfhirdb;
CREATE DATABASE
postgres=# \1+
List of databases

Name | Owner | Encoding | Collate | Ctype | Access privileges | Size | Tablespace | Description
------------- D it T e e At et T
fhirbase | postgres | UTF8 | en_US.utf8 | en_US.utf8 | | 181 MB | pg_default
postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 | | 7605 kB | pg_default | default administrative connection database
ravenfhirdb | postgres | UTF8 | en_US.utf8 | en_US.utf8 | | 7473 kB | pg_default
template® | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/postgres +| 7473 kB | pg_default | unmodifiable empty database
| | | | | postgres=CTc/postgres | |
templatel | postgres | UTF8 | en_US.utf8 | en_US.utf8 | =c/postgres +| 7473 kB | pg_default | default template for new databases
| | | | | |

postgres=CTc/postgres |

(5 rows)

_images/search-edrs-step1a.png
Raven RecordViewer ImportCase Record Comparison FHIRValidator Workflow Simulator

Version: 1.0.0-dev

home > workflow-simulator > search-edrs

B

Workflow Simulator - Search EDRS

@ selectvor

to EDRS document

@ configure Endpoint

@ search evRs

Step 1 - Select or Import an MDI to EDRS Document (Optional) If provided, the Document Bundle i used to populate the Search Parameters. Otherwise, the Search Parameters
may be manually specified

Select MDI to EDRS Document

Filter

Manner of Death

Name

Tacktheritrix, Jackmerius.

Shower-handel, Davoin

Buckshank, Ozmataz

Washingbeard, Beezer

Winslow, Annie

Stevens, Erica

Rivera, Chance

Gender

Male

Male

Male

Male

Female

Female

Male

Import MDI to EDRS FHIR Document Bundle

Date of Death

12/13/2022
12/13/2022
12/13/2022
12/13/2022
12/13/2022
12/13/2022

12/13/2022

Manner of Death

Natural

Accidental Death

Natural

Accidental Death

Accidental Death

Natural

Accidental Death

MDI Case Number

000005

000006

000007

000008

000006

000007

000008

_images/Raven20Diagram.png
Stage 2

Stage 3

Mapping Ul

Validator Ul

Mapping Service
(CSV to FHIR)

} Validator Service >

(SEARCH)

UseCase Ul

. UseCase Ul
(UPDATE)

UseCase Ul

~(CERTIFICATION,

Toxicology Lab View Ul
- UseCase Ul UseCase Ul
(AMMEND]

(Messaging)

MDI FHIR Endpoints

Selectable FHIR Data Server State EDRS. FHIR Data Server
(Bluejay-EDRS) (Raven-CMS)
Communication may be either
inside or outside of Raven.
UseCase Ul '\ UseCase Ul UseCase Ul UseCase Ul UseCase Ul

(SEARCH)

Actual CMS

(UPDATE) _/(CERTIFICATION)

(AMMEND)

(Messaging)
Actual LIMS | Database
UseCase Server
(Messaging)
“This communication is
outside the Raven.

_images/search-edrs-step1b.png
Raven RecordViewer ImportCase Record Comparison FHIR Validator

Workflow Simulator

home > workflow-simulator > search-edrs

L:T_q Workflow Simulator - Search EDRS

@ select MDI to EDRS document

© configure Endpoint @ search Evrs

Step 1 - Select or Import an MDI to EDRS Document (Optional) If provided, the Document Bundle is used to populate the Search Parameters. Otherwise, the Search Parameters
may be manually specified

Select MDI to EDRS Document Import MDI to EDRS FHIR Document Bundle

The data provided should be a valid FHIR MDI to EDRS Document Bundle. Please validate your resource prior to using it in the workflow simulator or unexpected behavior
may oceur.

Click the “Input MDI to EDRS Document Bundle" button below to paste in your complete Document Bundle resource o click *Select File® to select a plain text (JSON) file
from your local drive.

Input MDI to EDRS Document Bundle Select File

Selected MDI to EDRS Case

Decedent Name:
Date/Time of death:

MDI Tracking Number:

Proceed to Configure Endpoint

nav.xhtml

 Table of Contents

 		
 Welcome to the Raven Platform documentation!

 		
 End User Manual

 		
 The MDI Standard

 		
 What is FHIR?

 		
 What is MDI FHIR IG?

 		
 Overview of MDI Workflows

 		
 Record Management

 		
 Record Import (Importing MDI Records)

 		
 Record Viewer (Viewing Cases)

 		
 Validation And Comparison

 		
 Archtecture

 		
 Workflow Simulator

 		
 Workflows/Use Cases

 		
 Technical Manual

 		
 Standard MDI API (MAPI)

 		
 Operation APIs for MDI-to-EDRS Workflow

 		
 Security Recommendations

 		
 Search API

 		
 Read API

 		
 Update API

 		
 Component Overview

 		
 Raven FHIR Server

 		
 Bluejay FHIR Server

 		
 Raven Dashboard

 		
 Raven Import API

 		
 Validation Service

 		
 Libraries

 		
 MDI JavaLib

 		
 MDI .NET

 		
 About Raven Team

_images/search-edrs-step3b.png
Result FHIR Result HTTP Request HTTP Response
Name Gender Address EDRS File Number
3432 Earth Street
Organa, Leia Female EDRS-04

Alpharetta GA 12321

_images/validator_arch.png
Raven 2 Ul

MDI Validator
Component

MDI Record

Validator Results

Validator API

HL7
Command
Line Validator

_images/search-edrs-step2.png
i Raven RecordViewer ImportCase Record Comparison FHIR Validator Workflow Simulator Version: 1.0.0-dev

home > workflow-simulator > search-edrs

L:T_q Workflow Simulator - Search EDRS

@ select MDIto EDRS document © configure Endpoint © searchevrs

Step 2- Configure the EDRS endpoint. The BlueJay test server is provided as a default.

Selected MDI to EDRS Case

Decedent Name:
Date/Time of death:

MDI Tracking Number:

Please be aware that for custom endpoint configuration users are responsible for all security considerations. Raven does ot store any user information, though some web,
browsers may attempt to store sensitive data input into form fields.

(® Registered Endpoint () Custom Endpoint

Select Endpoint

BlueJay

View Server Capability Statement

View Server $mdi-documents Operation Definition

_images/search-edrs-step3a.png
: Raven RecordViewer ImportCase Record Comparison FHIR Validator Workflow Simulator

home > workflow-simulator > search-edrs

L:T_q Workflow Simulator - Search EDRS

@ select MDI to EDRS document © configure Endpoint © searcheors

Step 3- Set EDRS search parameters. Parameters may be automatically populated if a case was selected in Step #1. The parameter lst is variable, defined by the FHIR Server's
operation definition for EDRS searching. Search results are shown below. If any results were found, users may select a case and load a summary of the data

Selected MDI to EDRS Case v

Endpoint Configuration v

EDRS Search Parameters ~

Parameter

Given Name - X ¢

"resourceType": "Parameters”,
Parameter "parameter”: []

Family Name - X '

Parameter

EDRS File Number - X

+ Add Parameter
cersouen [N

_images/workflow-list.png
: Raven Record Viewer Import Case Record Comparison FHIR Validator Workflow Simulator

Version: 1.0.0-dev

home > workflow-simulator

Select a testing workflow from the list below. You will walk through a series of steps to guide in testing of that workflow using the Raven platform, with demonstrations of relevant FHIR
Resources and API interactions.

EDRS Search

The 'EDRS Search' workflow simulates searching cases in an Electronic Death Registration System (EDRS). Testers representing Medical Examiners/Coroners (ME/Cs) can provide
search parameters executed against the BlueJay EDRS test server, which implements the MDI Documents FHIR Operation for search. Supported parameters include primary case
identification fields, as well as additional data (e.g., demographics information) if it exists in the test EDRS case records. Search parameters and all relevant HTTP requests and
responses are provided in both human readable forms and as FHIR resources for demonstration.

Start Workflow

_static/file.png

_static/minus.png

_static/plus.png

