
Raven

GTRI

Nov 13, 2023

CONTENTS

1 What is Raven? 3
1.1 End User Manual . 3
1.2 Technical Manual . 13
1.3 About Raven Team . 29

i

ii

Raven

This document exists as a guide to help users understand the Raven mortality platform, providing both end-user manuals
as well as technical documentation.

CONTENTS 1

Raven

2 CONTENTS

CHAPTER

ONE

WHAT IS RAVEN?

Raven is an open-source and proof of concept platform for the Medicolegal Death Investigation (MDI) FHIR Imple-
mentation Guide (IG). It is both a

1. Testing Tool for data validation, data comparison, data exchange via API, and any features on demand in the
future, and

2. Education Tool for showing various examples in FHIR format and workflows in action”

The current Raven tooling and tests aid developers in implementing the MDI FHIR record format by validating the
data against MDI IG guidelines and FHIR-based extended API operations. For more information on each Raven tool
components, Raven’s MDI CSV schema, or MDI FHIR standard please see the corresponding sections in this document,
accessible through the table of contents below or the sidebar navigation menu.

1.1 End User Manual

In this section, you can learn how to use and run the Raven platform. You can think of Raven as a playground or
sandbox. Each structure has its own function and feature that a user can play with or even put your hands in dirt if the
user wants. In Raven, you can run and play.

Are you non-technical? If you are a non-technical end user, then we recommend you to go to “The MDI Standard”
page first and learn about Medicolegal Death Investigation (MDI) workflows

1.1.1 The MDI Standard

What is FHIR?

HL7 Fast Healthcare Interoperability Resources (FHIR) is a successor to HL7’s earlier industry standards healthcare
messaging, HL7v2.x and HL7v3.x. It builds upon those standards to produce a modern interoperability standard,
enabling the easy exchange of healthcare records across systems.

FHIR is built around the concept of “Resources”, logically distinct entities that serve as the minimum granularity for
transfer. For example, the Patient resource represents core patient demographic data and serves a focal reference for
many other resources. Other resources include clinical concepts such as Condition or an Observation.

FHIR is currently up to its R5 release, though R4 is still the most prevalent of the modern releases and continues to
be the release in which most development is focused. For a complete list of FHIR R4 Resources and their respective
maturities, please see the FHIR R4 Resource List.

3

http://hl7.org/fhir/
https://hl7.org/fhir/R4/resourcelist.html

Raven

What is MDI FHIR IG?

The Medicolegal Death Investigation (MDI) FHIR Implementation Guide (IG) is a FHIR implementation guide de-
tailing the proper method of using FHIR resources to construct a FHIR version of a Death and Toxicology Reporting.
The MDI standard is developed to support modernization of interoperability between Coroner/Medical Examiner case
management systems (CMS) and other systems such as Electronic Death Registrar Systems (EDRS) and Toxicology
Lab Information and Management System (LIMS).

The Raven Platform uses the MDI IG for handling death records, importing MDI data and exporting to FHIR resources.
The Raven Platform allows users to import their own data into FHIR MDI resources and store them on the Raven FHIR
Server.

MDI IG is still in the draft version and being evolved as more data elements are considered. The MDI IG will follow
the HL7 FHIR IG development cycles and will become mature over the development cycles.

For a more detailed breakdown of MDI contents, please see the official MDI Implementation Guide.

Overview of MDI Workflows

Currently, two workflows are defined in the MDI IG, MDI-to-EDRS and Toxicology-to-MDI. The MDI IG defines
profiles to describe the required content structures for the workflows.

MDI-to-EDRS

MDI-to-EDRS workflow represents the interoperability between MDI case management system (CMS) and state’s
electronic death registration system (EDRS). In MDI IG, this workflow is supported by MDI-to-EDRS profiles. As it
happens in most states, the case is mostly created by funeral directors. Thus, this workflow begins with an initial case
created at the EDRS. CMS first searches EDRS for a case and retrieves the case with limited decedent’s demographics.
CMS may update the case during the journey of the death investigation. When the investigation is completed, the case
shall be certified and submitted to EDRS.

In this workflow, users can validate the MDI-to-EDRS FHIR bundle documents, load the documents, and submit to
EDRS. It’s highly recommended for users to first validate the FHIR data before loading to Raven. For those who do
not have their own dataset or are not ready to produce the dataset, Raven allows users to search the Raven FHIR Server,
load the case and play with the case. Users can explore the raw FHIR data along with the rendered data in forms.

Toxicology-to-MDI

Toxicology-to-MDI workflow represents the interoperability between forensic toxicology laboratory information man-
agement system (LIMS) to an MDI case management system (CMS). In MDI IG, this workflow is supported by
Toxicology-to-MDI profiles. This workflow is bidirectional. There is an inital lab order sent from CMS with sam-
ples. After lab work is performed, the lab report is sent back to CMS from LIMS. Currently, the MDI IG specifies the
lab reporting direction only and uses FHIR messaging for the data exchanges.

Users can validate the Toxicology-to-MDI FHIR bundle messages and store the messages in Raven FHIR server.

4 Chapter 1. What is Raven?

http://hl7.org/fhir/us/mdi/
http://hl7.org/fhir/us/mdi/background.html

Raven

1.1.2 Record Management

Record Import (Importing MDI Records)

Record Importing is a Raven feature that imports the Comma-separated Values (CSV) or spreadsheet file into the MDI
FHIR server in an MDI FHIR IG compliant format.

The FHIR data model is complicated and structured with multi-levels and logical references. In order to help transi-
tioning from non-FHIR data to MDI IG compliant format, the MDI CSV format was designed. The Case Importing
feature maps the pre-defined MDI CSV format to the MDI FHIR IG format and persists them in the MDI FHIR server.

Note: Use Case: Mapping of any case management system data (in CSV/spreadsheet format) to MDI FHIR and
importing them to the Raven FHIR server

For the case importing, a predefined XLSX or spreadsheet template is provided to users. Users populate their data to
the provided template. The user-data will be converted to the MDI FHIR IG data and imported to Raven FHIR server.

For connectathon support, the Case Importing feature in Raven will generate reference MDI FHIR IG data using con-
nectathon testcase data so that participant-generated MDI FHIR IG data can be compared with the reference MDI FHIR
IG data with the comparison tool. The case importing and comparing data are done as follows.

Importing Procedure

• Reads the testcases spreadsheet

• Converts the data in the testcases to MDI CSV

• Mapper maps the MDI CSV to MDI IG FHIR and stores the converted MDI FHIR IG data in the Raven
FHIR Server to be used as reference data

• When participants’ validated data are loaded to Raven, Comparison Tool compares the loaded data with
the reference data. See “Validation And Comparison” page for more information.

Spreadsheet Schema

If the user cannot construct the FHIR records necessary, or are unfamiliar with the FHIR standard in general; Raven
provides an excel spreadsheet XLSX template for easy of use. Users can fill in individual case data as plaintext values,
and use the import case view on the RAVEN platform. RAVEN will transform the XLSX data into individual FHIR
case records that adhere to the FHIR-MDI-IG standard. The template is hosted on the RAVEN base site; and a copy
can be directly downloaded from the public internet.

1.1. End User Manual 5

https://gtvault-my.sharepoint.com/:x:/g/personal/mriley7_gatech_edu/EW6MPoLovyROhAxtk4tjqkkBNzn0SstRhs_g4OOwBhcPIA?e=oL0Ci5
https://gtvault-my.sharepoint.com/:x:/g/personal/mriley7_gatech_edu/EW6MPoLovyROhAxtk4tjqkkBNzn0SstRhs_g4OOwBhcPIA?e=oL0Ci5

Raven

RAVEN Import XLSX Spreadsheet Definitions

Sections Elements Description
Tracking Numbers This section is for tracking separate identifiers, an identifier for the local mdi system, and the state registrar(EDRS) file number
Tracking Numbers Tracking Number: Mdi Case Number A locally unique case number from the case management system. Optional
Tracking Numbers Tracking Number: EDRS File Number A locally unique case number from the state registrar(EDRS). Usually assigned once the case has been registered or submitted to the state registrar.Optional
Decedent This section is for decedent demographic information, all information resides in the us-core-patient resource within the document
Decedent Decedent Name Primary name of the Decedent.Accepted Formats:<First Name> <Last Name><First Name> <Middle Initial> <Last Name><First Name> <Middle Name> <Last Name>
Decedent Decedent Race Race of DecedentAccepted values are shown in the dropdownIf the decedent has multiple race entries, use a comma-seperated format to enter multiple races
Decedent Decedent Ethnicity Ethnicity of DecedentAccepted values are shown in the dropdown
Decedent Decedent SexAtDeath Decedent’s gender, as determined at the time of death.Accepted values are shown in the dropdown
Decedent Decedent SSN Social Security Number of decedentAccepted Formats:###-##-#############
Decedent Decedent Age The age of the decedent. In case of infant or fetal death, an age denomination may be used.Accepted formats:<Age Value><Age Value> <Age Unit>
Decedent Decedent DOB The date in which the Decedent was bornAccepted Formats:mm/dd/yyyymm-dd-yyyy
Decedent Decedent Marital status
Decedent Decedent Residence: Street Primary Address of Decedent’s residence address. Multiple lines are supported.
Decedent Decedent Residence: city
Decedent Decedent Residence: county
Decedent Decedent Residence: State, U.S. Territory or Canadian Province
Decedent Decedent Residence: Postal Code
Decedent Decedent Residence: Country
Cause And Manner of Death This section is for the information collected in the Cause-and-Manner section of the MDI case document. Data includes* Cause of Death pathway* Manner of Death* Death Date* Injury description and cirumstances
Cause And Manner of Death Cause of Death Part I Line a First line of the cause of death
Cause And Manner of Death Cause of Death Part I Line b Second line of the cause of death
Cause And Manner of Death Cause of Death Part I Line c Third line of the cause of death
Cause And Manner of Death Cause of Death Part I Line d Fourth line of the cause of death
Cause And Manner of Death Cause of Death Part I Interval, Line a Approximate interval of the first cause of death. A unit of age must be providedAccepted Formats:<Age> <Age Units>
Cause And Manner of Death Cause of Death Part I Interval, Line b Approximate interval of the second cause of death. A unit of age must be providedAccepted Formats:<Age> <Age Units>
Cause And Manner of Death Cause of Death Part I Interval, Line c Approximate interval of the third cause of death. A unit of age must be providedAccepted Formats:<Age> <Age Units>
Cause And Manner of Death Cause of Death Part I Interval, Line d Approximate interval of the fourth cause of death. A unit of age must be providedAccepted Formats:<Age> <Age Units>
Cause And Manner of Death Cause of Death Part II Other conributing conditions to the cause of death.If multiple contributing conditions apply, use a comma seperated list.
Cause And Manner of Death Manner of Death Manner of deathAccepted values are shown in the dropdown
Cause And Manner of Death Date of Injury If an injury occurred leading to death, the date of the injuryAccepted Formats:mm/dd/yyyymm-dd-yyyy
Cause And Manner of Death Time of Injury If an injury occurred leading to death, the time of the injury. Date of Injury must be completed for time of injury to be accepted.Accepted Formats:hh:mm:sshh:mmhh:mm AM/PM
Cause And Manner of Death How Injury Occurred A text description of the injury.
Cause And Manner of Death Did Injury Occur at Work? In the case of an injury, was the injury a part of the decedent’s work.Accepted values are shown in the dropdown

continues on next page

6 Chapter 1. What is Raven?

Raven

Table 1 – continued from previous page
Sections Elements Description
Cause And Manner of Death Decedent’s Transportation Role During Injury If an injury occurred with a vechicle, was the decedent a driver, passenger, or pedestrian?Accepted values are shown in the dropdown
Death Circumstances This section describes specific findings and circumstances related to the decedent’s death* Death Location* Injury Location* Death Date* Decedent Pregnancy Status* Tobacco Use Contribute to Death
Death Circumstances Location of death Full or partial address describing the location of death
Death Circumstances Location of Injury If an injury occurred, description of location, full, or partial address of the location of injury
Death Circumstances Pregnancy status Was the decedent pregenant, and how close to term was the decedent?Accepted values are shown in the dropdown
Death Circumstances Did Tobacco Use Contribute to Death? If the decedent used tobacco, did their tobacco use contribute to their cause of death?Accepted values are shown in the dropdown
Jurisdiction This section describes jurisdictional findings for the case* Death Date* Pronounced date* Place of death established
Jurisdiction Decedent Date of death The date of death of the decedentAccepted Formats:mm/dd/yyyymm-dd-yyyy
Jurisdiction Decedent Time of death The time of death of the decedent. Decedent date of death must be completed for Decedent Time of death to be acceptedAccepted Formats:hh:mm:sshh:mmhh:mm AM/PM
Jurisdiction Date establishment method The circumstances of how the date of death was established.Accepted values are shown in the dropdown
Jurisdiction Date pronounced dead The date in which the decedent was formally pronounced deadAccepted Formats:mm/dd/yyyymm-dd-yyyy
Jurisdiction Time pronounced dead The time in which the decedent was formally pronounced dead. Date pronounced dead must be completed for Time pronounced dead to be acceptedAccepted Formats:hh:mm:sshh:mmhh:mm AM/PM
Jurisdiction Place of death The type of place the decedent died in (home, hospital, hospice, etc.)Accepted values are shown in the dropdown
Exam-Autopsy This section describes the autopsy findings, if an autopsy occurred.
Exam-Autopsy Autopsy Performed? Was an autopsy performed on the body?
Exam-Autopsy Autopsy Results Available? If an autopsy was performed, are the results available and used to determine the cause of death?
Chief Medical Examiner/Coroner This section describes the primary Chief Medical Examiner or Coroner associated to the case.
Chief Medical Examiner/Coroner Medical Examiner Name Name of the Medical Examiner.Accepted Formats:<First Name> <Last Name><First Name> <Middle Initial> <Last Name><First Name> <Middle Name> <Last Name>
Chief Medical Examiner/Coroner Medical Examiner Phone Number Phone number of the office of the Medical Examiner, or primary contact numberAccepted Formats:###-###-####
Chief Medical Examiner/Coroner Medical Examiner License Number Medical Examiner License Number associated to the juridiction in which the case is owned.
Chief Medical Examiner/Coroner Medical Examiner Office: Street Primary Address of the medical examiner’s office or primary address. Multiple lines are supported.
Chief Medical Examiner/Coroner Medical Examiner Office: City
Chief Medical Examiner/Coroner Medical Examiner Office: County
Chief Medical Examiner/Coroner Medical Examiner Office: State, U.S. Territory or Canadian Province
Chief Medical Examiner/Coroner Medical Examiner Office: Postal Code
Certifier This section describes the certifier of the case, if the case has been certified. Oftentimes, the Chief Medical Examiner and the Certifier can be the same party. If the case is not certified, leave blank
Certifier Certifier Name Name of the Certifier.Accepted Formats:<First Name> <Last Name><First Name> <Middle Initial> <Last Name><First Name> <Middle Name> <Last Name>
Certifier Certifier Type Is the Certifer a Physician, a pronouncer, or other?

Record Viewer (Viewing Cases)

The Record Viewer is a UI component which allows the browsing and viewing of Raven FHIR Server records, encom-
passing both MDI Case Documents (MDI to EDRS) and Toxicology Reports (LIMS to MDI). In addition to providing
a user-friendly option for viewing the data present on the FHIR Server, the layout is structured from the perspective of
the MDI Implementation Guide to serve as an educational tool to better understand the data structure and fields which
make up the MDI to EDRS and Toxicology to MDI documents.

1.1. End User Manual 7

Raven

The Record Viewer also features a FHIR Resource Explorer, which allows users to select a field and see the underlying
FHIR Resource structure containing the related data. The FHIR Resource Explorer will support JSON and XML
formats, as well as a human readable “narrative view”.

Note: Use Case: Human readable display of MDI FHIR IG data with a FHIR explorer. Any cases loaded in the Raven
FHIR server should be retrievable by Record Viewer. Users can use FHIR APIs to load the data.

1.1.3 Validation And Comparison

The Validation & ComparisonRaven feature set includes the MDI Validator and the Comparison Tool. The purpose of
Validation & Comparison is to confirm MDI record conformance and validity as it is important to connectathon testing
and support.

The MDI (Medicolegal Death Investigation) Validator is a web application that allows users to upload or copy-paste
their MDI FHIR IG data for validation. The MDI Validator uses the HL7 FHIR validator as a core validation engine
and provides a user interface (UI) wrapper that is tailored to the MDI IG.

The Comparison Tool is a connectathon supporting tool that will compare pre-validated test case MDI FHIR IG data
with the user generated FHIR data. Users will want to ensure that not only their data validated but also their contents
in FHIR correctly populated. The Comparison Tool will provide a compressed case view with side by-side comparison
of the imported record and the correct test case record. This will let users easily hone in on individual content issues
and have confidence in their process.

Note: Connectathon Support - validation of user generated MDI FHIR IG data.

Connectathon participants can enter their FHIR documents into the MDI FHIR IG validator and review any errors. The
validator confirms the users’ confidence in their external mapping as well as provides a learning experience for review
and conforming to the IG.

8 Chapter 1. What is Raven?

Raven

Archtecture

These would be modules within the Raven Platform or could be used independent of Raven for testing. They rely on
the Raven FHIR server to serve the data.

1.1.4 Workflow Simulator

The Workflow Simulator is a module of the Raven platform that allows users to simulate data flows between Medicole-
gal Death Investigation (MDI) systems such as case management systems (CMS), electronic death registration systems
(EDRS), and toxicology laboratory information systems (LIMS). The supported data flows are defined by interoper-
ability use cases. There are two types of established use cases: Testing Use Cases and Operational Use Cases.

1. Testing Use Cases: Use cases that are developed for testing events to evaluate the interoperability implementation
of MDI systems

2. Operational Use Cases: Use cases that are defined by users in the MDI community to standardize the operations
such as search, update, certification, amendment, or messaging.

Some testing use cases can be supported by individual Raven modules such as the FHIR Validator and Record Com-
parison modules. Operational use cases, which are often more complex, such as the Search EDRS API workflow, can
be implemented as a proof-of-concept using the Workflow Simulator prior to production development. Thus, users can
use the Workflow Simulator as clear indicators and metrics to help making decisions on where to spend their resources
as they rebuild for modernization and interoperability within their data ecosystems.

Workflows/Use Cases

When opening the Workflow Simulator module, the user will be given a list of currently implemented workflows to
select from. Once selected, the workflow will be loaded, presented as a step by step process in Raven.

1.1. End User Manual 9

Raven

Search EDRS (CMS to EDRS)

Step 1 - Import/Select Record (Optional)

The first step of the Search EDRS workflow allows the user to select an MDI to EDRS Document from the Raven FHIR
Server to use to auto populate search parameters with the values from the record. Users may also import a record into
the workflow as an MDI to EDRS Document Bundle in the FHIR JSON format. This step is entirely optional, and if a
user wishes to proceed without a case select they can manually input all search parameters required.

Step 2 - Configure Endpoint

After the user decides on whether they would like to use an existing record, they are taken to the Configure Endpoint step.
This part of workflow is the configuration of the FHIR endpoint for testing the search functionality against an Electronic

10 Chapter 1. What is Raven?

Raven

Death Registration System (EDRS). Users may select between a pre-registered Endpoint or a Custom Endpoint. Pre-
registered endpoints are configured in Raven and will typically provide open testing endpoints, including the Raven
BlueJay server which acts as a test EDRS. Selecting a pre-registered endpoint requires no additional configuration from
the user. For custom endpoints, users may provide a non-registered testing endpoint and setup basic authorization as
needed. Custom endpoints are not recorded in any form by the Raven platform, and their use is entirely the responsibility
of the user. Please note that the Raven platform is a single page application based in a web browser, and using custom
endpoints may result in the user’s browser recording sensitive information separate from the Raven platform. (This
should be managed by the user in coordination with their organization’s internal IT policies.)

Step 3 - Search EDRS (API Interaction)

The final step of the Search EDRS workflow is the execution of search parameters against the identified EDRS endpoint.
The potential parameters fields are data driven and populated automatically based on the FHIR MDI Implementation
Guide “MDI Documents” Operation Definition. Users may select any number of parameter fields they wish to use.
If a record was selected or imported during step 1, the parameters will attempt to have their values automatically
populated. As the user enters data or modifies the parameter fields, an example of the FHIR Parameters resource is
shown for demonstration purposes which matches the current state of the parameters HTML form. This allows users
building reference implementations a model to which they can refer in their own development, tying a standard HTML
style form to the underlying FHIR resource it will produce. Once satisified with their search parameters, users may
connect to the EDRS and attempt to find matching records.

1.1. End User Manual 11

Raven

If records are identified on the EDRS, the results are shown below the parameters. The results can be viewed either
as a human readable table summarizing the matching records, or as a raw FHIR search set bundle. In addition, users
can use the HTTP Request and Response tabs to better be able to identify the headers involved in the HTTP call to the
EDRS. In the summary table under the default Results tab, a record may be selected to load further information.

Once selected in the Results table, the record is displayed below the table. As with the full search results, this can be
viewed either as a human readable summary and as the underyling FHIR MDI to EDRS Document Bundle

12 Chapter 1. What is Raven?

Raven

1.2 Technical Manual

In the technical manual, we get into deeper and provide technical information for developers or users with a technical
background. The contents of this section will be subject to change as the Raven evolves or is added with new features.
As the changes can happen often, it’s highly recommended to refresh each page so that the cached pages can be refreshed
with new updates.

1.2.1 Standard MDI API (MAPI)

Note: Standard MDI API (MAPI) will be documented as a best practice in the MDI IG site in the future. Until then,
the Raven documentation will temporarily house the standard MAPI specification.

Operation APIs for MDI-to-EDRS Workflow

MDI FHIR Implementation Guide (IG) is available in http://hl7.org/fhir/us/mdi/ This IG should be used for the payload
of MAPI.

FHIR defines base restful APIs for FHIR data transportation. Their documents are available from https://hl7.org/
FHIR/http.html. And, the FHIR API Operations are documented in https://hl7.org/FHIR/operationslist.html. MAPI is
extended the FHIR ASPI operations. Therefor, the basic rules of FHIR APIs and operations are also applied to MAPI.
For example,

• Content-type for FHIR resources is application/fhir+xml or application/fhir+json. This needs to be specified in
the HTTP header.

• application/x-www-form-urlencoded can be used for POST search requests if HTTP Form is used.

In FHIR, FHIR resources, interactions, and operations are published using CompatibilityStatement (GET
[base]/metadata). Detailed information about the CompatibilityStatement is available in https://hl7.org/FHIR/
capabilitystatement.html. It is recommended that EDRS FHIR servers publish their capability statement as defined
in this link.

1.2. Technical Manual 13

http://hl7.org/fhir/us/mdi/
https://hl7.org/FHIR/http.html
https://hl7.org/FHIR/http.html
https://hl7.org/FHIR/operationslist.html
https://hl7.org/FHIR/capabilitystatement.html
https://hl7.org/FHIR/capabilitystatement.html

Raven

Security Recommendations

This section covers a minimum level of security recommended by the MDI FHIR IG. There are more data exchange
protocols and content models defined in the FHIR Security document. MDI systems that require a higher level of
security should refer to the FHIR Security document for the interoperability.

Secure Data Transportation

In most modern systems, digital data are exchanged using web services. FHIR recommends a web service called
RESTful Application Programming Interface (REST API) where REST stands for REpresentational State Transfer.
REST API uses Transport Layer Security (TLS) for the secure transportation. More accurately, TLS 1.2 or higher
needs to be used. This is also known as HTTPS. All data exchanges in MDI FHIR IG must be done in HTTPS

Standard Authorization Protocol

A standard authorization protocol that can be used for the data access is the OAuth 2.0 (OAuth2) Authorization Frame-
work defined in RFC 6749. There are many documents provided by OAuth2 service providers that are much easier and
simpler to understand. Searching on Internet using “OAuth2” keyword will return several related documents.

Roles in OAuth2

OAuth2 defines several components that play different roles. Systems in MDI IG should play the roles to support the
OAuth2. The OAuth2 roles are changed depending on the roles in the MDI workflows. Table1 shows which OAuth2
roles the systems in MDI IG should play in the MDI-to-EDRS and Toxicology-to-MDI workflows. As more workflows
are added to the MDI IG, additional roles may be added to the system, which may be ended up playing multiple roles.

Role Responsibility MDI-
and-
EDRS

Tox-
and-
MDI

Authoriza-
tion Server

Server that authenticates the resource owner and issues access tokens to the
client application. The authorization server can be the same as the authentica-
tion server or can be a separate server.

EDRS CMS

Client Application that wants to access the resource on behalf of the resource owner.
The client can be a web application, a mobile application, or a desktop appli-
cation.

CMS LIMS

Resource
Owner

User who owns the resource (such as a photo or a document) that a client ap-
plication wants to access. The resource owner grants permission to the client
application to access the resource.

CMS
Users
EDRS
Users

LIMS
Users

Resource
Server
(Provider)

Server that hosts the resource that the client application wants to access. The
resource server verifies the access token and grants access to the resource if the
token is valid.

EDRS CMS

Table1: Roles in OAuth2 and MDI Systems

14 Chapter 1. What is Raven?

https://www.hl7.org/fhir/security.html
https://www.rfc-editor.org/rfc/rfc6749

Raven

OAuth2 Flows

OAuth2 defines different flows based on the client (or application) types. This document only discusses the flow(s)
that might be applicable to the client types in MDI. Figure 1 depicts the authorization code flow that can provide
authentication and authorization of clients in MDI workflows. Detail transactions for the authorization code flow are
explained in section 4.1 of RFC 6749.

Figure 1: Authorization Code Flow in OAuth2

Client Registration

For a client to be able to get authenticated and authorized, the client must be registered at the authorization server.
When a client is registered, the client should provide redirection_uri. Client_id will then be issued to the client. The
client will use the client_id and redirection_uri for its authentication and authorization.

Authorization Request

Client first needs to get an authorization code. In Figure 1, 1, 2, and 3 are the authorization request steps. Client should
provide client identifier with client_id and redirection_uri (optional). Client_id and redirection_uri will be matched
with registered data at the authorization server (1). If the request is valid, then the client will be redirected to user
authentication (2) where authentication and consent occur. Once client authenticated and authorized, authorization
code is returned to client by being redirected to the redirection_uri (3).

Parameters for the authorization request are as follows. They are included as URL parameters with HTTPS GET
method. However, POST can also be used by having the parameters included in the payload with a content-type set to
application/x-www-form-urlencoded.

Parameters

1.2. Technical Manual 15

https://www.rfc-editor.org/rfc/rfc6749#section-4.1
https://www.rfc-editor.org/rfc/rfc6749

Raven

Request
response_type required Fixed value: code
client_id required Client identifier issued at the registration
redirection_uri optional Full URL that authorization server will use to respond to request
scope optional
state recommended
Response
code required Authorization Code to be used for the access token request
state required If client puts state in the request

Response to the request is sent to the redirection_uri at the client using application/x-www-form-urlencoded content-
type.

Example:

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz&redirect_uri=https%3A%2F
→˓%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com

Access Token Request

After authorization code is successfully received, access token request can be sent to authorization server (or token
server) for an access token. Steps 4 and 5 in figure 1 are access token request flow. Parameters for the access token
request are as follows.

Parameters

Request
grant_type required Fixed value: authorization_code
code required The authorization code received from the request.
redirection_uri required Full URL that authorization server will use to respond to request
client_id required If the client is not authenticating with authorization server
Response
access_token required Access token issued by the authorization server
token_type required Type of the token issued
expires_in recommended The lifetime (in sec) of the access token
refresh_token optional Used to obtain a new access token
scope optional

Example

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA&redirect_uri=https%3A%2F
→˓%2Fclient%2Eexample%2Ecom%2Fcb

16 Chapter 1. What is Raven?

Raven

Refresh Token Request

If refresh token is available, then a request can be sent to the authorization server (or token endpoint). If client authen-
tication is included, the authentication needs to be performed.

Parameters

Request
grant_type required Fixed value: refresh_token
refresh_token required Refresh token issued to a client.
scope optional
Response
access_token required Access token issued by the authorization server
token_type required Type of the token issued
expires_in recommended The lifetime (in sec) of the access token
refresh_token optional Used to obtain a new access token
scope optional

Example

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA

Accessing Resource Server

After authentication/authorization is (are) completed, client can put the access token in the header and submit the
request to resource server for data. The access token is placed in the header as follows.

Authorization: Bearer <access token>

Client must check the expires_in value. If token is expired, and refresh access token is supported, then client can submit
the request to renew the access token (see sections above related to the requests).

Error Handling

If error occurs during authorization, the server should respond as specified in 5.2 of RFC 6749. In summary, the
response should be 400 (Bad Request) status code (unless specified otherwise) with the following parameters.

Error Parameters:

1.2. Technical Manual 17

https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc6749

Raven

Key
error required A single ASCII error code from the

following values:
Values

invalid_request

The request is missing a required parameter, includes an unsupported
parameter value
(other than grant type), repeats a parameter, includes multiple credentials,
utilizes
more than one mechanism for authenticating the client, or is otherwise
malformed.

invalid_client

Client authentication failed (e.g., unknown client, no client authentication
included,
or unsupported authentication method). The authorization server MAY
return an HTTP 401
(Unauthorized) status code to indicate which HTTP authentication schemes
are supported.
If the client attempted to authenticate via the “Authorization” request
header field,
the authorization server MUST respond with an HTTP 401 (Unauthorized)
status code and
include the “WWW-Authenticate” response header field matching the
authentication scheme
used by the client.

invalid_grant

The provided authorization grant (e.g., authorization code, resource owner
credentials)
or refresh token is invalid, expired, revoked, does not match the redirection
URI used
in the authorization request, or was issued to another client.

unauthorized_client

The authenticated client is not authorized to use this authorization grant type.

unsupported_grant_type The authorization grant type is not supported by the authorization server.
invalid_scope The requested scope is invalid, unknown, malformed, or exceeds the scope

granted by the
resource owner.

Values for the “error” parameter MUST NOT include characters outside the set %x20-21 / %x23-5B / %x5D-7E.
Key

error_description optional Human-readable ASCII text
providing additional information,
used to assist
the client developer in
understanding the error that
occurred. Values for
the”error_description” parameter
MUST NOT include characters
outside the
set %x20-21 / %x23-5B /
%x5D-7E.

error_uri optional A URI identifying a
human-readable web page with
information about the
error, used to provide the client
developer with additional
information
about the error. Values for the
“error_uri” parameter MUST
conform to the
URI-reference syntax and thus
MUST NOT include characters
outside the set
%x21 / %x23-5B / %x5D-7E.

18 Chapter 1. What is Raven?

Raven

Example

HTTP/1.1 400 Bad Request
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache

{
"error":"invalid_request"

}

Search API

The above diagram depicts the MDI to EDRS API workflow. MAPI design follows this workflow. We will start with
the SEARCH operation. In most states, the case is created by funeral directors. For this document, we assume that the
case has already been created at the EDRS with decedent’s demographics.

The FHIR defines basic search API. However, the FHIR search parameters are specific to a resource. The extended
search queries are complicated. So, MAPI extended the FHIR document generation operation ($document) and defined
search parameters that represent MDI data elements. Details about the base $document operation is described in
https://www.hl7.org/fhir/composition-operation-document.html

Let’s first review how MAPI extended the $document operation.

Extended Operation for MDI-to-EDRS Document generation

This is a resource instance type extended operation. It means that the MDI document is generated from the Composition
resource. And the extension is made to the extended search parameters.

This is an idempotent operation. Both POST and GET can be used with the following endpoint URL pattern.

POST [base FHIR Url]/Composition/$document with Parameters resource in the payload
GET [base FHIR Url]/Composition/$document?name1=value1&name2=value2

Search Parameters for the MDI Document Generation

1.2. Technical Manual 19

https://www.hl7.org/fhir/composition-operation-document.html

Raven

Name Cardinality Type Documentation
In Parameters
id 0..1 uri Composition.id of Com-

position - MDI to EDRS
tracking-number 0..1 token Composition.extension:extension-

tracking-number of Com-
position - MDI and EDRS

patient 0..* One or more decedent re-
lated search parameters

patient.birthdate 0..1 date* Decedent’s date of birth
patient.family 0..1 string Decedent’s last name
patient.given 0..1 string Decedent’s first name
patient.gender 0..1 token Decedent’s gender
death-location 0..1 string Location address in

Location-death
death-date-pronounced 0..1 date* Observa-

tion.component:datetimePronouncedDead
in Observation - Death
Date (either time or date-
Time)

death-date 0..1 date* Value[x] (actual or pre-
sumed date of death) in
Observation - Death Date
(either dateTime or Pe-
riod)

Out Parameters

return 0..1 resource Bundle - Searchset or
Bundle - Document MDI
and EDRS. If [id] is
supplied,
then this should be
Bundle - Document MDI
and EDRS

* date parameter search in FHIR uses first two characters for date range search (eg. “lt” for less than). To use the date
range search, the type needs to be string.

Please note that the Search parameters related to patient are formatted with “.” (dot). In FHIR, this means that the
search parameters after “.” are part of patient parameter in Parameters resource. See the example below.

{
"resourceType":"Parameters",
"parameter":[

{
"name":"patient",
"part":[

{
"name":"family",
"valueString":"Hans"

(continues on next page)

20 Chapter 1. What is Raven?

https://hl7.org/fhir/r4/search.html#date

Raven

(continued from previous page)

},
{
"name":"given",
"valueString":"Kennoby"

}
]

}
]

}

If id is provided within URL path (e.g., /Composition/id/$document), then the output response should be an MDI
document bundle as there will be only one or zero result.

If id or search paraemters is provided in the URL parameter (e.g. [base]/Composition?name=value) or Parameters
resource in the payload, then the output response should be a searchset Bundle resource with matching MDI document
Bundle resources even if there is only one result. If “OR” search parameter is needed in the searching parameters, then
as specified in the FHIR specification (https://hl7.org/fhir/R4/search.html#escaping), “,” should be used. For example,
if we want to search records that has death-location equals to either a, b, or c, then its search parameter in Parameters
resource will be like below.

"name”: "death-location",
"valueString": "a,b,c"

Please see the examples of search Parameters resource and its response.

Request

Listing 1: POST [FHIRbaseURL]/Composition/$document

{
"resourceType":"Parameters",
"parameter":[

{
"name":"patient",
"part":[

{
"name":"family",
"valueString":"Hans"

},
{
"name":"given",
"valueString":"Kennoby"

}
]

}
]

}

Response

{
"resourceType":"Bundle",
"id":"13ab1ecf-38ce-4f47-aebb-a38396a80775",

(continues on next page)

1.2. Technical Manual 21

https://hl7.org/fhir/R4/search.html#escaping

Raven

(continued from previous page)

"type":"searchset",
"total":1,
"entry":[

{
"resourceType":"Bundle",
"id":"fd240814-5911-49bb-bb20-72066add4a18",
"meta":{
"profile":[

"http://hl7.org/fhir/us/mdi/StructureDefinition/Bundle-document-mdi-to-
→˓edrs"

]
},
"type":"document",
"entry":[

{
"fullUrl":"Composition/965a0688-e6f4-4bff-a96d-639cbd7ea295",
"resource":{
"resourceType":"Composition",
"id":"965a0688-e6f4-4bff-a96d-639cbd7ea295"

}
}

]
}

]
}

Error Handling

API Level Errors API itself can indicate errors. API errors are displayed in the HTTP code. 2xx are returned when
API transactions are successfully processed. 4xx or 5xx are error codes. 3xx are not errors. These codes need to
be supported at the client side if redirections are required by the server. More details can be found from https://en.
wikipedia.org/wiki/List_of_HTTP_status_codes.

CMS must check if the correct endpoint and search parameters are used if such errors are returned. Server also returns
error code when there are document level errors. In this case OperationOutcome could be included in the payload. CMS
would want to parse the payload as it contains the source of errors. For more information about the OperationOutcome,
see the following section.

MDI Document Level Errors with 2xx HTTP response For all non 2xx status code, error(s) must be indicated in the
response with a OperationOutcome resource.

In OperationOutcome, EDRS must be include information what caused the error if the error needs to be fixed by CMS.
If it’s the EDRS that needs to fix the error, it must be indicated so that CMS user(s) can contact EDRS for the error.
Below shows an example of OperationOutcome.

Listing 2: HTTP/1.1 500 Internal Server Error

{
"resourceType":"OperationOutcome",
"id":"searchfail",
"text":{
"status":"generated",

(continues on next page)

22 Chapter 1. What is Raven?

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Raven

(continued from previous page)

"div":"<div xmlns=\"http://www.w3.org/1999/xhtml\">\n
<p>The "name" parameter has the modifier "exact" which is␣

→˓not supported by
this server</p>\n</div>"

},
"issue":[

{
"severity":"fatal",
"code":"code-invalid",
"details":{
"text":"The \"name\" parameter has the modifier \"exact\" which is not␣

→˓supported by this server"
}

}
]

}

Read API

READ API uses the base FHIR operation $document. The URL pattern is.

GET [base FHIR URL]/Composition/id/$document

id is a Composition resource Id, which is assigned by systems such as CMS and EDRS. If a server maintains the id
for all generated FHIR Document Bundles, then this id should be used to get the document. The response for this API
is a MDI document Bundle (not a searchset Bundle).

Update API

During the death investigation, C/ME may need to update the case in the EDRS. This API allows CMS to update the
active case. PUT should be used for the HTTP action method. And, Parameters resource is used to include the MDI
document or profile(s) that C/MEs want to update. Since this API presumes that the case already exists in the EDRS, the
case management system must either make sure identifier(s) is included in the MDI document or provide a parameter
that EDRS can use to find the case to update.

FHIR endpoint for UPDATE API operations is as follow.

PUT [base url]/Composition/$update-mdi

The payload is Parameters resource as defined below.

Input/Output Parameters

1.2. Technical Manual 23

Raven

Name Car-
di-
nal-
ity

Type Documentation

In Parameters
Jurisdiction
defined
parameters

0..* string Any required parameters for a jurisdiction

tracking-number 1..1 token EDRS case number if available
mdi-document 1..1 Bundle MDI document bundle. The “mdi-document” is a reserved keyword.

This should only be used for the MDI-and-EDRS profile bundle docu-
ment.

warning 1..1 Opera-
tionOut-
come

Informational OperationOutcome (For response ONLY)

Out Parameters
return 0..1 Opera-

tionOut-
come

If an error occurs, OO resource is returned. If response data need to be
sent back, Parameters resource can be used.

Ex. Request in the payload

{
"resourceType":"Parameters",
"parameter":[

{
"name":"edrs-file-number",
"valueString":"1234"

},
{

"name":"jurisdiction defined key",
"valueString":"value"

},
{

"name":"mdi-document",
"resource":{

[Your MDI document bundle goes here in JSON or XML.]
}

}
]

}

In Parameters includes parameters that can be used for the update operation.

UPDATE API allows custom parameters (labeled as Jurisdiction defined parameters). They are locally de-
fined parameters. It can be used in any ways by the systems that defined the parameters. If Jurisdiction defined param-
eters exist but cannot be understood, they should be ignored and should NOT cause any error.

The mdi-document, is a death certificate document in MDI FHIR IG. If CMS is updating the complete death certificate,
then all the required data elements should exist in the docvument.

Partial document is allowed if CMS needs to update only portion of death certificate document. However, to conform
to MDI FHIR IG, any empty required fields must be extended to include data-absent-reason extension.

24 Chapter 1. What is Raven?

Raven

The response for a successful UPDATE API should be 200 OK. The payload is not required in the response. If EDRS
or CMS needs to respond with some data in the response, the Parameters resource can be used. EDRS and CMS can
use the same parameters as In Parameters parameters. If the submitted document will be included in the response body,
then “mdi-document” parameter key should be used.

If the API operation was successful, but there were some warnings that EDRS wants to send back to CMS, then
parameter key, “warning”, should be used. And, “resource” should be used to include OperationOutcome resource.
If the API operations were failed, then the response should be OperationOutcome resource with a HTTP error status
code. Please see the example of response below.

Ex. Response if the operation was successful, and EDRS wanted to respond with updated data.

{
"resourceType":"Parameters",
"parameter":[

{
"name":"jurisdiction defined key1",
"valueString":"value1"

},
{
"name":"jurisdiction defined key2",
"valueString":"value2"

},
{
"name":"mdi-document",
"resource":{

"MDI document bundle"
}

},
{
"name":"warning",
"resource":{

"OperationOutcome resource"
}

}
]

}

Response if error occured.

{
"resourceType":"OperationOutcome",
"id":"searchfail",
"text":{
"status":"generated",
"div":"<div xmlns=\"http://www.w3.org/1999/xhtml\">\n <p>The "case␣

→˓number" 1234 does not exist</p>\n </div>"
},
"issue":[

{
"severity":"fatal",
"code":"case-invalid",
"details":{
"text":"The \"case number\" 1234 does not exist."

(continues on next page)

1.2. Technical Manual 25

Raven

(continued from previous page)

}
}

]
}

Update using FHIR Messaging

If a messaging infrastructure is already in place, or if the content needs to be forwarded to another endpoint, it
may be necessary to handle the target endpoint differently, given that the FHIR receiving endpoint is not the ac-
tual target. If this direction is deemed appropriate, the FHIR process-message operation (https://hl7.org/fhir/R4/
messageheader-operation-process-message.html) can be employed.

If the decision is to utilize the process-message operation, the payload should take the form of a bundle, with the
initial entry being a MessageHeader resource. Subsequent to this entry, parameters must be present, adhering to the
specifications outlined in the Update API.

1.2.2 Component Overview

Raven FHIR Server

The Raven platform stores MDI case data in the Raven FHIR server. The Raven FHIR server is developed using HAPI
FHIR Java library with fhirbase as the backend database. Basic instance level of the FHIR APIs are implemented and
available as,

GET [base FHIR Url]/Patient/[id] or [search parameters for SEARCH]
POST [base FHIR Url]/Patient with Patient Resource in the payload
DELETE [base FHIR Url]/Patient/[id]

In addition to the basic FHIR API, FHIR operation APIs are also implemented for transaction, batch, $document, and
$process-message operations. $process-message is the operation that Toxicology-to-CMS workflow is using.

26 Chapter 1. What is Raven?

https://hl7.org/fhir/R4/messageheader-operation-process-message.html
https://hl7.org/fhir/R4/messageheader-operation-process-message.html
https://hapifhir.io/hapi-fhir/
https://hapifhir.io/hapi-fhir/
https://www.health-samurai.io/fhirbase

Raven

Bluejay FHIR Server

The Bluejay FHIR server is an instance that is configured to simulate EDRS that supports Standard MDI API (MAPI)
(MDI-API). The Bluejay FHIR server is also based on the same code stack as Raven FHIR Server. Thus, the Bluejay
FHIR server also provides the basic instance level of the FHIR APIs.

MDI-API that the Bluejay FHIR server currently supports is search API. Case Management Systems can test their
MDI-API’s search API feature with the Bluejay FHIR server. Please contact our team to arrange the testing.

Raven Dashboard

The Raven Dashboard is the user interface for the Raven Platform. It consists of multiple core modules and features.

• Record Importing and Viewing

– Record Viewer - View MDI case records currently stored on the Raven FHIR Server, with the ability
to view the underlying FHIR structures in a human readable narrative, XML, or JSON.

– Import Records - Import records to the Raven FHIR Server. Records can be submitted directly as a
FHIR MDI-to-EDRS Document Bundle or from the MDI test case spreadsheet (XLSX file).

• Validate and Compare

– FHIR Validator - UI wrapper for the official HL7 FHIR Validator command line tool.

– Record Comparison (In Development) - Compare a user-generated FHIR MDI Document bundle cre-
ated from a test case against a known valid rendering of the same test case.

• Workflow Simulator (In Development) - Move through steps of one of several test scenarios for various MDI
related workflows, such as CMS to EDRS or a Toxicology Lab to CMS. The workflow simulator integrates other
features.

The Raven Dashboard is a frontend TypeScript project develped using the Angular framework, leveraging major li-
braries such as Angular Material Design components.

Raven Import API

The Raven Import API provides a backend service to import test cases from XLSX spreadsheets into the Raven FHIR
Server as a FHIR MDI-to-EDRS Document Bundle. The API returns the results of the process to the Dashboard for
rendering to users.

Validation Service

The Validation Service is a web API which wraps the HL7 command line FHIR validation tool. The Raven Dashboard
allows users to post a FHIR resource to the validation service, which returns to the results of the validation.

1.2. Technical Manual 27

Raven

1.2.3 Libraries

Raven provides helper libraries for developers who develop MDI IG functionality in their systems. In fact, Raven itself
is using this library in order to produce and consume the MDI IG data. The libraries are available in Java and .NET
and are also available as an open source. Details for each library are provided below.

MDI JavaLib

This Java Library is for the following FHIR Implemtation Guides (IG)

• Medicolegal Death Investigation (MDI) FHIR IG | http://hl7.org/fhir/us/mdi/

• Occupational Data for Health (ODH) FHIR IG | http://hl7.org/fhir/us/odh/STU1.1/

• US Core FHIR IG | https://www.hl7.org/fhir/us/core/

The model profiles are built with the annotation package and base model definitions from HAPI-FHIR (https://hapifhir.
io/)

MDI Javalib is available as a buildable source package in the MortalityReporting github organization (https://github.
com/MortalityReporting/MDI_javalib)

The library is built as a maven project and can be added as a dependency to existing projects (https://maven.apache.org/)

User can use the MDI Javalib to

• Deserialize JSON or XML into java objects

• Create new resources from an internal data source

• Serialize java objects into JSON or XML for transmission

MDI .NET

This .NET Library is for the following FHIR Implementation Guides (IG)

• Medicolegal Death Investigation (MDI) FHIR IG | http://hl7.org/fhir/us/mdi/

• US Public Health (US PH) FHIR IG | https://build.fhir.org/ig/HL7/fhir-us-ph-common-library-ig/

• US Core FHIR IG | https://www.hl7.org/fhir/us/core/

All profiles are built on top of standard .NET FHIR classes (https://github.com/FirelyTeam/firely-net-sdk).

ODH, US PH, and US Core IGs are base IGs that MDI and CBS IGs are built on. Thus, only referenced profiles in US
PH, US Core, and ODH are implemented. The rest of the profiles will be added based on the needs.

MDI .NET libraries are available for download from nuget.org. Simply search by “MDI FHIR” at the nuget manager
in Visual Studio. If you want to download from nuget.org, then the link will be https://www.nuget.org/packages?q=
MDI+FHIR. The result will show up as follow, and C# developers need to install all three of libraries,

28 Chapter 1. What is Raven?

http://hl7.org/fhir/us/mdi/
http://hl7.org/fhir/us/odh/STU1.1/
https://www.hl7.org/fhir/us/core/
https://hapifhir.io/
https://hapifhir.io/
https://github.com/MortalityReporting/MDI_javalib
https://github.com/MortalityReporting/MDI_javalib
https://maven.apache.org/
http://hl7.org/fhir/us/mdi/
https://build.fhir.org/ig/HL7/fhir-us-ph-common-library-ig/
https://www.hl7.org/fhir/us/core/
https://github.com/FirelyTeam/firely-net-sdk
https://www.nuget.org/packages?q=MDI+FHIR
https://www.nuget.org/packages?q=MDI+FHIR

Raven

Source codes are also available for developers who are willing to contribute to the IG library developement in .net -
https://github.com/MortalityReporting/fhir-ig-dotnet

1.3 About Raven Team

Jon Duke Project Director

Alexandra Ramirez,
Julie Mittelstedt,
Marla Gorges

Project Manager

Myung Choi Project Lead, MDI FHIR Server, MDI-API, MDI .NET Library

Michael Riley MDI FHIR Import/Mapper, Validator, MDI Java Library,
Community Engagement

Elizabeth Shivers Documentation Lead, DevOps/CI, User Experience and
Interface (Dashboard), MDI-API IG

Plamen Tassev User Interface (Dashboard) Lead, Case Viewer, Validator
Andrew Stevens MDI-API IG Lead
Russell Mitchell User Interface (Dashboard)

For any questions or requests, please use Zulip #Medicolegal Death Investigation Stream.

Raven is released under the Apache License 2.0.

1.3. About Raven Team 29

https://github.com/MortalityReporting/fhir-ig-dotnet
https://chat.fhir.org/#narrow/stream/305799-Medicolegal-Death-Investigation
https://github.com/MortalityReporting/raven-platform/blob/main/LICENSE

Raven

Public Raven URL: https://apps.hdap.gatech.edu/raven/
Source repositories for Raven can be found in the GitHub Mortality Reporting Organization.

Note:

• All data shown is synthetic for demonstration purposes only and does not represent actual cases or decedents.*

• Screenshots may be taken from earlier internal versions of Raven and may not be 100% accurate to the final
release.*

If you find an error in the Raven platform and documentation, please go to the “About Raven Team” page and let us
know!

30 Chapter 1. What is Raven?

https://apps.hdap.gatech.edu/raven/
https://github.com/MortalityReporting/

	What is Raven?
	End User Manual
	The MDI Standard
	What is FHIR?
	What is MDI FHIR IG?
	Overview of MDI Workflows
	MDI-to-EDRS
	Toxicology-to-MDI

	Record Management
	Record Import (Importing MDI Records)
	Spreadsheet Schema

	Record Viewer (Viewing Cases)

	Validation And Comparison
	Archtecture

	Workflow Simulator
	Workflows/Use Cases
	Search EDRS (CMS to EDRS)

	Technical Manual
	Standard MDI API (MAPI)
	Operation APIs for MDI-to-EDRS Workflow
	Security Recommendations
	Secure Data Transportation
	Standard Authorization Protocol
	Roles in OAuth2
	OAuth2 Flows
	Client Registration
	Authorization Request
	Access Token Request
	Refresh Token Request
	Accessing Resource Server
	Error Handling

	Search API
	Extended Operation for MDI-to-EDRS Document generation
	Error Handling

	Read API
	Update API
	Update using FHIR Messaging

	Component Overview
	Raven FHIR Server
	Bluejay FHIR Server
	Raven Dashboard
	Raven Import API
	Validation Service

	Libraries
	MDI JavaLib
	MDI .NET

	About Raven Team

